中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,三角形中,是邊長為的正方形,平面⊥底面,若分別是的中點.

(1)求證:∥底面
(2)求證:⊥平面
(3)求幾何體的體積.

詳見解析

解析試題分析:(1)根據:面面平行,線面平行的定理,所以取的中點,連,分別為的中點,所以,然后根據面面平行的判定定理證明面//面,進一步證得∥底面;(2)根據,證得是直角,根據面面垂直,的性質定理,結合是邊長為的正方形,得,證得線線垂直,線面垂直;(3)取中點,即,幾何體看成四棱錐的體積,代入公式,根據面面垂直,線面垂直的性質定理等可證,,代入數字,得到結果.
試題解析:(I)解:取的中點,連結,(如圖)

因為分別是的中點,
所以,       2分
又因為為正方形,   所以,從而
所以平面平面
所以平面//平面
所以//平面.
(2)因為為正方形,所以,所以平面,     4分
又因為平面⊥平面,所以平面,             6分
所以
又因為
所以
因為,
所以平面.                     8分
(3)連結,因為,所以,                   9分
又平面⊥平面平面,所以⊥平面
因為三角形是等腰直角三角形,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在如圖所示的幾何體中,是邊長為的正三角形,,平面,平面平面,,且.

(1)證明://平面
(2)證明:平面平面
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45,點E、F分別為棱AB、PD的中點.

(1)求證:AF∥平面PCE;
(2)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側視圖是一個底邊長為6、高為4的等腰三角形.

(1)求該幾何體的體積V
(2)求該幾何體的側面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在斜三棱柱中,側面平面中點.

(1)求證:
(2)求證:平面
(3)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,且,平面底面的中點,是棱的中點,.

(Ⅰ)求證:平面
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱柱中,AC⊥BC,AB⊥,D為AB的中點,且CD⊥

(Ⅰ)求證:平面⊥平面ABC;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,PA平面ABCD,四邊形ABCD為矩形,PA=AB=,AD=1,點F是PB的中點,點E在邊BC上移動.

(I)求三棱錐E—PAD的體積;
(II)試問當點E在BC的何處時,有EF//平面PAC;
(1lI)證明:無論點E在邊BC的何處,都有PEAF.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,三棱柱中,側棱與底面垂直,分別是的中點

(1)求證:∥平面
(2)求證:⊥平面
(3)求三棱錐的體積的體積.

查看答案和解析>>