中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設f(x)=asin2x+bcos2x,a,b∈R,ab≠0.若f(x)≤|f(
π
6
)|對一切x∈R恒成立,則
①f(
11π
12
)=0.
②|f(
10
)|<|f(
π
5
)|.
③f(x)既不是奇函數也不是偶函數.
④f(x)的單調遞增區間是[kπ+
π
6
,kπ+
3
](k∈Z).
以上結論正確的是
①③
①③
(寫出正確結論的編號).
分析:由f(x)≤|f(
π
6
)|可知x=
π
6
是函數f(x)的對稱軸,然后根據三角函數的圖象和性質分別進行判斷即可.
解答:解:則f(x)=asin2x+bcos2x=
a2+b2
sin(2x+θ)
,其中cos?θ=
a
a2+b2
,sin?θ=
b
a2+b2

若f(x)≤|f(
π
6
)|可知x=
π
6
是函數f(x)的對稱軸,
∴2×
π
6
+θ=
π
2
+kπ
,則θ=
π
6
+kπ,k∈Z

f(x)=
a2+b2
sin?(2x+
π
6
+kπ)=±
a2+b2
sin?(2x+
π
6
)
,
①f(
11π
12
)=±
a2+b2
sin?(2×
11π
12
+
π
6
)=±
a2+b2
sin?2π=0
,成立.
②|f(
10
)|=
a2+b2
sin?(2×
10
+
π
6
)|=
a2+b2
|sin?(
5
+
π
6
)|
a2+b2
|sin?(
5
+
π
6
)|

|f(
π
5
)|=
a2+b2
sin?(2×
π
5
+
π
6
)|=
a2+b2
|sin?(
5
+
π
6
)|
,
∴|f(
10
)|=|f(
π
5
)|,∴②錯誤.
③由函數表達式可知f(-x)≠f(x),且f(-x)≠-f(x),∴f(x)既不是奇函數也不是偶函數,∴③正確.
④∵f(x)=
a2+b2
sin?(2x+
π
6
+kπ)=±
a2+b2
sin?(2x+
π
6
)
,表達式不確定,
∴函數的單調遞增區間不確定,∴④錯誤.
故答案為:①③.
點評:本題主要考查三角函數的圖象和性質,利用輔助角公式是解決本題的關鍵,綜合性較強,運算量較大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象關于直線x=
π3
對稱,它的最小正周期是π,則f(x)圖象上的一個對稱中心是
 
(寫出一個即可).

查看答案和解析>>

科目:高中數學 來源: 題型:

13、設f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β是常數),且f(2009)=5,則f(2010)=
3

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=asin(πx+α)+bcos(πx+β),其中a、b、α、β∈R且ab≠0,若f(2009)=5.則f(2010)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=asin(πx+α)+bcos(πx+β)+5,且f(2009)=2,則f(2010)=
8
8

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β為非零常數.若f(2012)=-1,則f(2013)=
 

查看答案和解析>>

同步練習冊答案