中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本小題14分)設函數.
(Ⅰ)討論的單調性;
(Ⅱ)已知,若函數的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數的導函數.若,試問:在區間上是否存在)個正數,使得成立?請證明你的結論.
(1)當時,的遞增區間是;當時,上單調遞增;在上單調遞減
(2)(3)存在,證明見解析

試題分析:
(Ⅰ)                   ……2分
①當時,恒成立,故的遞增區間是;         ……3分
②當時,令,則.
時,;當時,.
上單調遞增;在上單調遞減; ……6分
(Ⅱ)由上述討論,當時,為函數的唯一極大值點,
所以的最大值為=.                  ……8分
由題意有,解得.
所以的取值范圍為.                                     ……10分
(Ⅲ)當時,.    記,其中.
∵當時,,∴上為增函數,
上為增函數.                                    ……12分
,所以,對任意的,總有.
所以
又因為,所以.
故在區間上不存在使得成立的)個正數.                                ……14分
點評:對于題目條件較復雜,設問較多的題目審題時,應該細致嚴謹,將題目條件條目化,一一分析,細心推敲.對于設問較多的題目,一般前面的問題較簡單,問題難度階梯式上升,先由條件將前面的問題正確解答,然后將前面問題的結論作為后面問題解答的條件,注意問題之間的相互聯系,使問題化難為易,層層解決.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知函數的圖象是連續不斷的曲線,且有如下的對應值表

1
2
3
4
5
6

124.4
35
-74
14.5
-56.7
-123.6
  則函數在區間[1,6]上的零點至少有(   )
A、2個            B、3個            C、4個           D、5個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)設函數.
(1)當時,求的極值;
(2)當時,求的單調區間;
(3)若對任意,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分) 已知函數
(Ⅰ)當時,求函數的單調區間;
(Ⅱ)當時,函數圖象上的點都在所表示的平面區域內,求實數a的取值范圍.
(Ⅲ)求證:(其中,e是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

有極大值和極小值,則的取值范圍是__      .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數.
(1)當時,求證:函數上單調遞增;
(2)若函數有三個零點,求的值;
(3)若存在,使得,試求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)已知函數=.
(1)求函數在區間上的值域;
(2)是否存在實數,對任意給定的,在區間上都存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數圖象上任意不同的兩點,如果對于函數圖象上的點(其中總能使得成立,則稱函數具備性質“”,試判斷函數是不是具備性質“”,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知函數.
(1)若上是增函數,求實數的取值范圍;
(2)若的極值點,求上的最小值和最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數上可導,其導函數,且函數處取得極小值,
則函數的圖象可能是(  )

查看答案和解析>>

同步練習冊答案