中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)
已知函數為常數)是實數集上的奇函數,函數
在區間上是減函數.
(Ⅰ)求實數的值;
(Ⅱ)若上恒成立,求實數的最大值;
(Ⅲ)若關于的方程有且只有一個實數根,求的值.

(Ⅰ);(Ⅱ) ;(Ⅲ)

解析試題分析:(Ⅰ)是實數集上奇函數,
,即   ……2分.
帶入,顯然為奇函數.         ……3分
(Ⅱ)由(Ⅰ)知
要使是區間上的減函數,則有恒成立,,所以.           ……5分
要使上恒成立,
只需時恒成立即可.
(其中)恒成立即可. ………7分
,則
,所以實數的最大值為              ………9分
(Ⅲ)由(Ⅰ)知方程,即,


時,上為增函數;
時,上為減函數;
時,.     ………………11分

是減函數,當時,是增函數,
時,. ………………12分
只有當,即時,方程有且只有一個實數根. …………14分
考點:本題考查了導函數的運用
點評:近幾年新課標高考對于函數與導數這一綜合問題的命制,一般以有理函數與半超越(指數、對數)函數的組合復合且含有參量的函數為背景載體,解題時要注意對數式對函數定義域的隱蔽,這類問題重點考查函數單調性、導數運算、不等式方程的求解等基本知識,注重數學思想(分類與整合、數與形的結合)方法(分析法、綜合法、反證法)的運用.把數學運算的“力量”與數學思維的“技巧”完美結合

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數(a>1).
(1)判斷函數f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義域為的函數是奇函數。
(Ⅰ)求的值;
(Ⅱ)若對任意的,不等式恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數f(x)=
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性,并證明;
(3)判斷函數f(x)在定義域上的單調性,并用定義證明。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數.
(1)設,討論的單調性;
(2)若對任意,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知函數
若函數在區間(a,a+)上存在極值,其中a>0,求實數a的取值范圍;
如果當時,不等式恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分) 若函數的圖象過兩點,設函數;
(1)求的定義域;
(2)求函數的值域,判斷g(x)奇偶性,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)設,討論的單調性;
(Ⅱ)若對任意恒有,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數…是自然對數的底數)的最小值為
(Ⅰ)求實數的值;
(Ⅱ)已知,試解關于的不等式 ;
(Ⅲ)已知.若存在實數,使得對任意的,都有,試求的最大值.

查看答案和解析>>

同步練習冊答案