中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
已知函數.
(1)設,討論的單調性;
(2)若對任意,求實數的取值范圍.

(1)增區間為,減區間為.(2).

解析試題分析:(1),定義域為


上是減函數,又
于是的增區間為,減區間為.
(2)由已知.
時,,不合題意;
時,,由,可得.
.……8分
,方程的判別式
上是增函數,

存在,使得,對任意不合題意.
綜上所述,實數的取值范圍是.
考點:本題主要考查應用導數研究函數的單調性及極值,根據不等式成立求參數值。
點評:典型題,本題屬于導數應用中的基本問題,(II)通過構造函數,并研究函數的單調性,函數值與最值比較,達到解題目的。分類討論,排除可能情況,值得關注。本題涉及對數函數,要特別注意函數的定義域。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

判斷函數 (≠0)在區間(-1,1)上的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若上單調遞增,求的取值范圍;
(2)若定義在區間D上的函數對于區間上的任意兩個值總有以下不等式成立,則稱函數為區間上的 “凹函數”.試證當時,為“凹函數”.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分13分)已知函數.其中表示不超過的最大整數,例如
(Ⅰ)試判斷函數的奇偶性,并說明理由;
(Ⅱ)求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(滿分14分) 定義在上的函數同時滿足以下條件:
上是減函數,在上是增函數;②是偶函數;
處的切線與直線垂直.
(1)求函數的解析式;
(2)設,求函數上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數為常數)是實數集上的奇函數,函數
在區間上是減函數.
(Ⅰ)求實數的值;
(Ⅱ)若上恒成立,求實數的最大值;
(Ⅲ)若關于的方程有且只有一個實數根,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數為自然對數的底數).
時,求的單調區間;若函數上無零點,求最小值;
若對任意給定的,在上總存在兩個不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)己知函數
(1)求的單調區間;
(2)若時,恒成立,求的取值范圍;
(3)若設函數,若的圖象與的圖象在區間上有兩個交點,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是定義在上的奇函數,且當時,
(Ⅰ)求的解析式;
(Ⅱ)直接寫出的單調區間(不需給出演算步驟);
(Ⅲ)求不等式解集.

查看答案和解析>>

同步練習冊答案