設(shè)正項(xiàng)數(shù)列
an
為等比數(shù)列,它的前n項(xiàng)和為Sn,a1=1,且
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)已知
是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列
的前n項(xiàng)和Tn.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=4an+1,設(shè)bn=an+1-2an.證明:數(shù)列{bn}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
記![]()
(1)求b1、b2、b3、b4的值;
(2)求數(shù)列
的通項(xiàng)公式及數(shù)列
的前n項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和為
滿(mǎn)足
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是等比數(shù)列
的前
項(xiàng)和,
、
、
成等差數(shù)列,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)是否存在正整數(shù)
,使得
?若存在,求出符合條件的所有
的集合;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列{
}的前n項(xiàng)和為
,
.
(Ⅰ)設(shè)
,證明:數(shù)列
是等比數(shù)列;
(Ⅱ)求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)若
,數(shù)列
的前
項(xiàng)和
,證明:![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是公比大于1的等比數(shù)列,
為數(shù)列
的前
項(xiàng)和.已知
,且
構(gòu)成等差數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
的前n項(xiàng)和為
,![]()
(I)證明:數(shù)列
是等比數(shù)列;
(Ⅱ)若
,數(shù)列
的前n項(xiàng)和為
,求不超過(guò)
的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列
和等比數(shù)列
中,
,
,
.
(Ⅰ)求數(shù)列
及
的通項(xiàng)公式;
(Ⅱ)若
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com