(本小題滿分12分)
(1)求直線
被雙曲線
截得的弦長;
(2)求過定點
的直線被雙曲線
截得的弦中點軌跡方程。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
過點
,且離心率
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在過點
的直線
交橢圓于不同的兩點M、N,且滿足
(其中點O為坐標(biāo)原點),若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)過點
作直線
與拋物線
相交于兩點
,圓![]()
![]()
![]()
(1)若拋物線在點
處的切線恰好與圓
相切,求直線
的方程;
(2)過點
分別作圓
的切線
,
試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
動圓
經(jīng)過定點
,且與直線
相切。
(1)求圓心
的軌跡
方程;
(2)直線
過定點
與曲線
交于
、
兩點:
①若
,求直線
的方程;
②若點
始終在以
為直徑的圓內(nèi),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)直線
與直線
交于
點.
(1)當(dāng)直線
過
點,且與直線
垂直時,求直線
的方程;
(2)當(dāng)直線
過
點,且坐標(biāo)原點
到直線
的距離為
時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓M的中心為坐標(biāo)原點 ,且焦點在x軸上,若M的一個頂點恰好是拋物線
的焦點,M的離心率
,過M的右焦點F作不與坐標(biāo)軸垂直的直線
,交M于A,B兩點。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點N(t,0)是一個動點,且
,求實數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
(1)焦點在x軸上的橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線的一條漸近線方程是
,并經(jīng)過點
,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
填空題(本大題有2小題,每題5分,共10分.請將答案填寫在答題卷中的橫線上):
(Ⅰ)函數(shù)
的最小值為 .
(Ⅱ)若點
在曲線
上,點
在曲線
上,點
在曲線
上,則
的最大值是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com