已知
在
與
處都取得極值.
(Ⅰ) 求
,
的值;
(Ⅱ)設(shè)函數(shù)
,若對(duì)任意的
,總存在
,使得、
,求實(shí)數(shù)
的取值范圍.
(Ⅰ)
;(Ⅱ)
.
解析試題分析:(Ⅰ)利用函數(shù)的極值點(diǎn)就是導(dǎo)數(shù)的零點(diǎn)可求;(Ⅱ)利用導(dǎo)數(shù)分析單調(diào)性,把恒成立問題轉(zhuǎn)化為求最值.
試題解析:(Ⅰ)
2分
在
與
處都取得極值
∴
,
, ∴
解得:
4分
當(dāng)
時(shí),
,
所以函數(shù)
在
與
處都取得極值
∴
7分
(Ⅱ)由(Ⅰ)知:函數(shù)
在
上遞減,
∴
9分
又 函數(shù)
圖象的對(duì)稱軸是![]()
(1)當(dāng)
時(shí):
,依題意有
成立, ∴ ![]()
(2)當(dāng)
時(shí):
,
∴
,即
,
解得:![]()
又∵
,∴![]()
(3)當(dāng)
時(shí):
,∴
,
, 又
,∴![]()
綜上:
所以,實(shí)數(shù)
的取值范圍為
13分
考點(diǎn):導(dǎo)數(shù)求極值,單調(diào)性
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
=
,
=
,若曲線
和曲線
都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線
.
(Ⅰ)求
,
,
,
的值;
(Ⅱ)若
≥-2時(shí),
≤
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(Ⅰ)求
的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)
在
上只有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,
(1)若
,求函數(shù)
的極值;
(2)若函數(shù)
在
上單調(diào)遞減,求實(shí)數(shù)
的取值范圍;
(3)在函數(shù)
的圖象上是否存在不同的兩點(diǎn)
,使線段
的中點(diǎn)的橫坐標(biāo)
與直線
的斜率
之間滿足
?若存在,求出
;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
(Ⅰ)若
,求函數(shù)
的極值;
(Ⅱ)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間
(
)上存在一點(diǎn)
,使得![]()
![]()
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ) 若函數(shù)
在
處的切線方程為
,求實(shí)數(shù)
的值.
(Ⅱ)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
是自然對(duì)數(shù)的底數(shù),
).
(Ⅰ)求
的單調(diào)區(qū)間、最大值;
(Ⅱ)討論關(guān)于
的方程
根的個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)直線
為曲線
的切線,且經(jīng)過原點(diǎn),求直線
的方程及切點(diǎn)坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com