中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2013•寧波二模)已知數列{an}是1為首項、2為公差的等差數列,{bn}是1為首項、2為公比的等比數列.設cn=abn,Tn=c1+c2+…+cn(n∈N*),則當Tn>2013時,n的最小值是(  )
分析:由題設知an=2n-1,bn=2n-1,所以由Tn=ab1+ab2+…+abn=a1+a2+a4+…+a 2n-1=2n+1-n-2和Tn>2013,得2n+1-n-2>2013,由此能求出當Tn>2013時,n的最小值.
解答:解:∵{an}是以1為首項,2為公差的等差數列,
∴an=2n-1,
∵{bn}是以1為首項,2為公比的等比數列,
∴bn=2n-1
∴Tn=c1+c2+…+cn=ab1+ab2+…+abn
=a1+a2+a4+…+a 2n-1=(2×1-1)+(2×2-1)+(2×4-1)+…+(2×2n-1-1)
=2(1+2+4+…+2n-1)-n
=2×
1-2n
1-2
-n
=2n+1-n-2,
∵Tn>2013,
∴2n+1-n-2>2013,
解得n≥10.
則當Tn>2013時,n的最小值是10.
故選C.
點評:本題首先考查等差數列、等比數列的基本量、通項,結合含兩個變量的不等式的處理問題,對數學思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•寧波二模)設公比大于零的等比數列{an}的前n項和為Sn,且a1=1,S4=5S2,數列{bn}的前n項和為Tn,滿足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求數列{an}、{bn}的通項公式;
(Ⅱ)設Cn=(Sn+1)(nbn-λ),若數列{Cn}是單調遞減數列,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)設函數f(x)的導函數為f′(x),對任意x∈R都有f′(x)>f(x)成立,則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)已知函數f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)當a=-
1
4
時,求函數y=f(x)的單調區間;
(Ⅱ)當x∈[1,+∞)時,函數y=f(x)圖象上的點都在不等式組
x≥1
y≤x-1
所表示的區域內,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)如圖是某學校抽取的n個學生體重的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,第3個小組的頻數為18,則的值n是
48
48

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)已知兩非零向量
a
b
,則“
a
b
=|
a
||
b
|”是“
a
b
共線”的(  )

查看答案和解析>>

同步練習冊答案