已知
是定義在
上的奇函數(shù),且
,若
,
有
恒成立.
(1)判斷
在
上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若
對所有
恒成立,求實數(shù)
的取值范圍。
(1)增函數(shù),證明詳見解析;(2)
或
或![]()
解析試題分析:(1)要判斷函數(shù)的單調(diào)性一般可用增函數(shù)和減函數(shù)的定義或利用導(dǎo)函數(shù)判斷,由于本題沒有函數(shù)解析式,再結(jié)合題目特點,適于用定義判斷,解決問題的關(guān)鍵是對照增函數(shù)和減函數(shù)的定義,再結(jié)合奇函數(shù)的條件,怎樣通過適當?shù)馁x值構(gòu)造出與
和
相關(guān)的式子,再判斷符號解決,通過觀察,只要令
即可;(2)不等式恒成立問題一般要轉(zhuǎn)化為函數(shù)的最值問題,先將原問題轉(zhuǎn)化為
對任意
成立,再構(gòu)造函數(shù)
,問題又轉(zhuǎn)化為任意
恒成立,此時可對
的系數(shù)
的符號討論,但較為繁瑣,較為簡單的做法是只要
滿足
且
即可.
試題解析:(1)設(shè)
且
,則
,
是奇函數(shù)
由題設(shè)知
且
時
,
即
在
上是增函數(shù)
(2)由(1)知,
在
上是增函數(shù),且
![]()
要
,對所有
恒成立,需且只需
即
成立,
令
,對任意
恒成立 需且只需
滿足
,
或
或![]()
考點:函數(shù)的單調(diào)性、不等式恒成立.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)
.
(l)求
的單調(diào)區(qū)間和極值;
(2)若對任意
恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
.
(1)當
時,證明:函數(shù)
不是奇函數(shù);
(2)設(shè)函數(shù)
是奇函數(shù),求
與
的值;
(3)在(2)條件下,判斷并證明函數(shù)
的單調(diào)性,并求不等式
的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定義域為R的函數(shù)
是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷
的單調(diào)性并證明;
(Ⅲ)若對任意的
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
在
處取得極值
.
(Ⅰ)求
的解析式;
(Ⅱ)設(shè)
是曲線
上除原點
外的任意一點,過
的中點且垂直于
軸的直線交曲線于點
,試問:是否存在這樣的點
,使得曲線在點
處的切線與
平行?若存在,求出點
的坐標;若不存在,說明理由;
(Ⅲ)設(shè)函數(shù)
,若對于任意
,總存在
,使得
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于定義域為
的函數(shù)
,如果存在區(qū)間
,同時滿足:
①
在
內(nèi)是單調(diào)函數(shù);②當定義域是
,
值域也是
,則稱
是函數(shù)![]()
的“好區(qū)間”.
(1)設(shè)
(其中
且
),判斷
是否存在“好區(qū)間”,并
說明理由;
(2)已知函數(shù)
有“好區(qū)間”
,當
變化時,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
在
內(nèi)恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,
,
(1)若
為奇函數(shù),求
的值;
(2)若
=1,試證
在區(qū)間
上是減函數(shù);
(3)若
=1,試求
在區(qū)間
上的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com