已知過點
的直線
交橢圓
于
兩點,
是橢圓的一個頂點,若線段
的中點恰為點
.
(1)求直線
的方程;
(2)求
的面積.
科目:高中數學 來源: 題型:解答題
平面直角坐標系xoy中,動點
滿足:點P到定點
與到y軸的距離之差為
.記動點P的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過點F的直線交曲線C于A、B兩點,過點A和原點O的直線交直線
于點D,求證:直線DB平行于x軸.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知頂點為原點
的拋物線
的焦點
與橢圓
的右焦點重合,
與
在第一和第四象限的交點分別為
.
(1)若△AOB是邊長為
的正三角形,求拋物線
的方程;
(2)若
,求橢圓
的離心率
;
(3)點
為橢圓
上的任一點,若直線
、
分別與
軸交于點
和
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
為橢圓![]()
的左右焦點,
是坐標原點,過
作垂直于
軸的直線
交橢圓于
,設
.
(1)證明:
成等比數列;
(2)若
的坐標為
,求橢圓
的方程;
(3)在(2)的橢圓中,過
的直線
與橢圓
交于
、
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓C:
=1(a>b>0)的離心率為
,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.![]()
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設M,N是橢圓C上關于y軸對稱的不同兩點,直線PM與QN相交于點T.求證:點T在橢圓C上.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點
和定直線
,動點與定點
的距離等于點
到定直線
的距離,記動點
的軌跡為曲線
.
(1)求曲線
的方程.
(2)若以
為圓心的圓與曲線
交于
、
不同兩點,且線段
是此圓的直徑時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,過點A(-2,-1)橢圓C∶
=1(a>b>0)的左焦點為F,短軸端點為B1、B2,
=2b2.
(1)求a、b的值;
(2)過點A的直線l與橢圓C的另一交點為Q,與y軸的交點為R.過原點O且平行于l的直線與橢圓的一個交點為P.若AQ·AR=3OP2,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線x2-
=1.
(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.
(2)設(1)中橢圓的左、右頂點分別為A、B,右焦點為F,直線l為橢圓的右準線,N為l上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AM=MN,求∠AMB的余弦值;
(3)設過A、F、N三點的圓與y軸交于P、Q兩點,當線段PQ的中點為(0,9)時,求這個圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C1:
=1,橢圓C2以C1的短軸為長軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設直線l與橢圓C2相交于不同的兩點A、B,已知A點的坐標為(-2,0),點Q(0,y0)在線段AB的垂直平分線上,且
=4,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com