平面直角坐標(biāo)系xoy中,動(dòng)點(diǎn)
滿足:點(diǎn)P到定點(diǎn)
與到y(tǒng)軸的距離之差為
.記動(dòng)點(diǎn)P的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過(guò)點(diǎn)F的直線交曲線C于A、B兩點(diǎn),過(guò)點(diǎn)A和原點(diǎn)O的直線交直線
于點(diǎn)D,求證:直線DB平行于x軸.
(1)
,(2)詳見解析.
解析試題分析:(1)求動(dòng)點(diǎn)軌跡方程,首先設(shè)動(dòng)點(diǎn)坐標(biāo),本題已設(shè)
,其次列動(dòng)點(diǎn)滿足條件
,然后利用坐標(biāo)化簡(jiǎn)關(guān)系式,即
,
,最后要考慮動(dòng)點(diǎn)滿足限制條件,本題為已知條件
,另外本題對(duì)條件
的化簡(jiǎn)也可從拋物線的定義上理解,這樣更快,(2)證明直線平行于
軸,可利用斜率為零,或證明縱坐標(biāo)相等,總之都需要從坐標(biāo)出發(fā).注意到點(diǎn)在拋物線上,設(shè)點(diǎn)的坐標(biāo)可簡(jiǎn)潔,設(shè)
的坐標(biāo)為
,利用
三點(diǎn)共線解出點(diǎn)
的縱坐標(biāo)為
,根據(jù)直線
與直線
的交點(diǎn)解出
的縱坐標(biāo)也為
.
試題解析:(1)依題意:
2分
4分
6分
注:或直接用定義求解.
(2)法1:設(shè)
,直線
的方程為![]()
由
得
8分![]()
直線
的方程為
點(diǎn)
的坐標(biāo)為
2分![]()
直線
平行于
軸. 14分
法2:設(shè)
的坐標(biāo)為
,則
的方程為![]()
點(diǎn)
的縱坐標(biāo)為
, 8分
直線
的方程為![]()
點(diǎn)
的縱坐標(biāo)為
. 12分
軸;當(dāng)
時(shí),結(jié)論也成立,
直線
平行于
軸. 14分
考點(diǎn):軌跡方程,直線與拋物線位置關(guān)系
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn),若A是PB的中點(diǎn),求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為
和
,且|![]()
|=2,
點(diǎn)(1,
)在該橢圓上.
(1)求橢圓C的方程;
(2)過(guò)
的直線
與橢圓C相交于A,B兩點(diǎn),若
A
B的面積為
,求以
為圓心且與直線
相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為P0,且
=![]()
.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L(zhǎng),設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點(diǎn)M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過(guò)點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于
.若存在,請(qǐng)求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的離心率為
,右焦點(diǎn)
到直線
的距離為
.
(1)求橢圓
的方程;
(2)過(guò)橢圓右焦點(diǎn)F2斜率為
(
)的直線
與橢圓
相交于
兩點(diǎn),
為橢圓的右頂點(diǎn),直線
分別交直線
于點(diǎn)
,線段
的中點(diǎn)為
,記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
的三個(gè)頂點(diǎn)都在拋物線
上,且拋物線的焦點(diǎn)
滿足
,若
邊上的中線所在直線
的方程為
(
為常數(shù)且
).
(1)求
的值;
(2)
為拋物線的頂點(diǎn),
,
,
的面積分別記為
,
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,其左、右焦點(diǎn)分別是F1、F2,過(guò)點(diǎn)F1的直線l交橢圓C于E、G兩點(diǎn),且△EGF2的周長(zhǎng)為4
.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足
+
=t
(O為坐標(biāo)原點(diǎn)),當(dāng)|
-
|<
時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知過(guò)點(diǎn)
的直線
交橢圓
于
兩點(diǎn),
是橢圓的一個(gè)頂點(diǎn),若線段
的中點(diǎn)恰為點(diǎn)
.
(1)求直線
的方程;
(2)求
的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com