(本題滿分10分)求雙曲線
的焦點(diǎn)坐標(biāo),離心率和漸近線方程.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的離心率為
,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知?jiǎng)又本
與橢圓
相交于
、
兩點(diǎn). ①若線段
中點(diǎn)的
橫坐標(biāo)為
,求斜率
的值;②若點(diǎn)
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知拋物線
:
過點(diǎn)
.(1)求拋物線
的方程,并求其準(zhǔn)線方程;
(2)是否存在平行于
(
為坐標(biāo)原點(diǎn))的直線
,使得直線
與拋物線
有公共點(diǎn),且直線
與
的
距離等于
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓
,過點(diǎn)(m,0)作圓
的切線
交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題15分)設(shè)拋物線
和點(diǎn)
,.斜率為
的直線與拋物線
相交不同的兩個(gè)點(diǎn)
.若點(diǎn)
恰好為
的中點(diǎn).
(1)求拋物線
的方程,
(2) 拋物線
上是否存在異于
的點(diǎn)
,使得經(jīng)過點(diǎn)
的圓和拋物線
在
處有相同的切線.若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)(理科)已知橢圓
,過焦點(diǎn)且垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點(diǎn)![]()
的直線
交橢圓于
兩點(diǎn),交直線
于點(diǎn)
,且
,
,
求證:
為定值,并計(jì)算出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分) 已知拋物線
與直線
相交于
兩點(diǎn).
(1)求證:以
為直徑的圓過坐標(biāo)系的原點(diǎn)
;(2)當(dāng)
的面積等于
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知長方形
,
,
,以
的中點(diǎn)
為
原點(diǎn)建立如圖所示的平面直角坐標(biāo)系
.
(1)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上任意一點(diǎn)為P,在x軸上有一個(gè)動(dòng)點(diǎn)Q(t,0),其中
,探究
的最
小值
。![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com