中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數.
(1)當時,求函數的單調區間;
(2)若函數在區間上為減函數,求實數的取值范圍;
(3)當時,不等式恒成立,求實數的取值范圍.
(1)增區間,減區間;(2);(3).

試題分析:(1)將代入函數解析式,直接利用導數求出函數的單調遞增區間和遞減區間;(2)將條件“在區間上為減函數”等價轉化為“不等式在區間上恒成立”,結合參數分離法進行求解;(3)構造新函數,將“不等式在區間上恒成立”等價轉化為“”,利用導數結合函數單調性圍繞進行求解,從而求出實數的取值范圍.
試題解析:(1)當時,

;解
的單調遞增區間是,單調遞減區間是
(2)因為函數在區間上為減函數,
所以恒成立,
恒成立,
(3)因為當時,不等式恒成立,
恒成立,設
只需即可

①當時,
時,,函數上單調遞減,故成立;
②當時,令,因為,所以解得
(i)當,即時,在區間
則函數上單調遞增,故上無最大值,不合題設;
(ii)當時,即時,在區間;在區間
函數上單調遞減,在區間單調遞增,同樣無最大值,不滿足條件;
③當時,由,故
故函數上單調遞減,故成立
綜上所述,實數的取值范圍是.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數(其中為常數);
(Ⅰ)如果函數有相同的極值點,求的值;
(Ⅱ)設,問是否存在,使得,若存在,請求出實數的取值范圍;若不存在,請說明理由.
(Ⅲ)記函數,若函數有5個不同的零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,函數
(Ⅰ)當時,求的最小值;
(Ⅱ)若在區間上是單調函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求的單調區間;
(2)若,在區間恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題13分)己知函數
(1)試探究函數的零點個數;
(2)若的圖象與軸交于兩點,中點為,設函數的導函數為, 求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設數列的前項和為,已知(n∈N*).
(Ⅰ)求數列的通項公式;
(Ⅱ)求證:當x>0時,
(Ⅲ)令,數列的前項和為.利用(2)的結論證明:當n∈N*且n≥2時,.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=(x+1)ln x-2x.
(1)求函數的單調區間;
(2)設h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若點P是函數圖象上任意一點,且在點P處切線的傾斜角為,則的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若存在x使不等式>成立,則實數m的取值范圍為(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案