已知向量m=(sin x,1),n=
,函數(shù)f(x)=(m+n)·m.
(1)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,A為銳角,a=2
,c=4,且f(A)是函數(shù)f(x)在
上的最大值,求△ABC的面積S.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2014·孝感模擬)已知函數(shù)f(x)=
sinωxcosωx-cos2ωx,其中ω為使f(x)能在x=
時(shí)取得最大值的最小正整數(shù).
(1)求ω的值.
(2)設(shè)△ABC的三邊長(zhǎng)a,b,c滿足b2=ac,且邊b所對(duì)的角θ的取值集合為M,當(dāng)x∈M時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)向量![]()
,定義一種向量積
.
已知向量
,
,點(diǎn)
為
的圖象上的動(dòng)點(diǎn),點(diǎn)![]()
為
的圖象上的動(dòng)點(diǎn),且滿足
(其中
為坐標(biāo)原點(diǎn)).
(1)請(qǐng)用
表示
;
(2)求
的表達(dá)式并求它的周期;
(3)把函數(shù)
圖象上各點(diǎn)的橫坐標(biāo)縮小為原來(lái)的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象.設(shè)函數(shù)![]()
![]()
,試討論函數(shù)
在區(qū)間
內(nèi)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(其中
>0,
),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
.
(1)求
的值;
(2)如果
在區(qū)間
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)求
的最小正周期及對(duì)稱軸方程;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若
,bc=6,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
的最大值為3,
的圖像的相鄰兩對(duì)稱軸間的距離為2,在
軸上的截距為2.
(1)求函數(shù)
的解析式;
(2)求
的單調(diào)遞增區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com