中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(1)求函數在區間上的值域;
(2)是否存在實數a,對任意給定的,在區間上都存在兩個不同的,使得成立.若存在,求出a的取值范圍;若不存在,請說明理由.

(1);(2)不存在.

解析試題分析:(1)∵,因此可以得到是單調遞增的,從而可以得到的值域為;(2)根據題意以及(1)中所求,問題等價于對任意的
上總有兩個不同的實根,因此不可能是單調函數,通過求得首先可以預判的大致的取值范圍為,再由此范圍下的單調性可以得到的極值,從而可以建立關于的不等式,進而求得的取值范圍.
(1)∵在區間上單調遞增,在區間上單調遞減,且的值域為  6分;
(2)令,則由(1)可得,原問題等價于:對任意的
上總有兩個不同的實根,故不可能是單調函數  7分
,其中
①當時,在區間上單調遞減,不合題意  8分,
②當時,在區間上單調遞增,不合題意  10分,
③當,即時,在區間上單調遞減;在區間上單調遞增,
由上可得,此時必有  12分
而上可得,則
綜上,滿足條件的a不存在  14分. 
考點:1.導數求函數的單調區間與極值;2.導數的運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

近年來,某企業每年消耗電費約24萬元,為了節能減排,決定安裝一個可使用15年的太陽能供電設備接入本企業電網,安裝這種供電設備的工本費(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數約為0.5.為了保證正常用電,安裝后采用太陽能和電能互補供電的模式.假設在此模式下,安裝后該企業每年消耗的電費(單位:萬元)與安裝的這種太陽能電池板的面積(單位:平方米)之間的函數關系是為常數).記為該村安裝這種太陽能供電設備的費用與該村15年共將消耗的電費之和.
(1)試解釋的實際意義,并建立關于的函數關系式;
(2)當為多少平方米時,取得最小值?最小值是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)求f(x)的單調區間和極值;
(2)關于的方程f(x)=a在區間上有兩個根,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其導函數為.
(1)若,求函數在點處的切線方程;
(2)求的單調區間;
(3)若為整數,若時,恒成立,試求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數).
⑴ 若函數的圖象在點處的切線的傾斜角為,求上的最小值;
⑵ 若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數,其中.
(1)當時,求的單調遞增區間;
(2)若在區間上的最小值為8,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處的切線與軸交點的橫坐標為
(1)求
(2)證明:當時,曲線與直線只有一個交點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為圓周率,為自然對數的底數.
(1)求函數的單調區間;
(2)求這6個數中的最大數與最小數;
(3)將這6個數按從小到大的順序排列,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區間[1,e]上的最小值為-2,求a的取值范圍.

查看答案和解析>>

同步練習冊答案