已知函數(shù)
.
(1)若函數(shù)
在
上單調(diào)遞增,求實數(shù)
的取值范圍.
(2)記函數(shù)
,若
的最小值是
,求函數(shù)
的解析式.
(1)
;(2)
.
解析試題分析:本題考查函數(shù)與導(dǎo)數(shù)及運用導(dǎo)數(shù)求單調(diào)區(qū)間、最值等數(shù)學(xué)知識和方法,考查函數(shù)思想、分類討論思想.第一問,先求導(dǎo)數(shù),將已知轉(zhuǎn)化為恒成立問題,即
恒成立,即
在
上恒成立,所以本問的關(guān)鍵是求
的最大值問題,求導(dǎo)數(shù),判斷導(dǎo)數(shù)的正負,確定函數(shù)的單調(diào)性求最大值;第二問,先將
代入求出
解析式,求出
,由于
含參數(shù)
,所以需要討論
的正負,當(dāng)
時,
,所以
在
單調(diào)遞增,無最小值,不合題意,當(dāng)
時,求導(dǎo),判斷導(dǎo)數(shù)的正負,確定函數(shù)的單調(diào)性,求出最小值
,讓它等于已知條件-6,列出等式,解出
的值,本問應(yīng)注意函數(shù)的定義域.
試題解析:⑴ ![]()
∴
在
上恒成立,
令![]()
∵
恒成立,
∴
在
單調(diào)遞減,
∴
6分
(2) ![]()
∵![]()
易知,
時,
恒成立,
∴
在
單調(diào)遞增,無最小值,不合題意
∴
,
令
,則
(舍負)
∴
在
上單調(diào)遞減,在
上單調(diào)遞增,
則
是函數(shù)的極小值點.
,
解得
,
. 12分
考點:1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求函數(shù)最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實數(shù)
的取值范圍;
(3)是否存在最小的正整數(shù)
,使得當(dāng)
時,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,若
在點
處的切線斜率為
.
(Ⅰ)用
表示
;
(Ⅱ)設(shè)
,若
對定義域內(nèi)的
恒成立,求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實數(shù)
的取值范圍;
(3)是否存在最小的正整數(shù)
,使得當(dāng)
時,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)求函數(shù)
單調(diào)遞增區(qū)間;
(2)若存在
,使得
是自然對數(shù)的底數(shù)),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
若
是函數(shù)
的極值點,1和
是函數(shù)
的兩個不同零點,且
,求
.
若對任意
,都存在
(
為自然對數(shù)的底數(shù)),使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)當(dāng)
時判斷
的單調(diào)性;
(2)若
在其定義域為增函數(shù),求正實數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,當(dāng)
時,若
,總有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間和極值;
(2)若函數(shù)
在[1,4]上是減函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com