中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設數列的各項均為正數,其前n項的和為,對于任意正整數m,n, 恒成立.
(Ⅰ)若=1,求及數列的通項公式;
(Ⅱ)若,求證:數列是等比數列.

(Ⅰ)  , ;(Ⅱ)參考解析

解析試題分析:(Ⅰ)通過令,可求得.同理可以求出.由于所給的等式中有兩個參數m,n.所以以一個為主元,讓另一個m=1,和m=2取特殊值通過消去即可得到一個關于的遞推式.從而可求出的通項式,從而通過,可求出通項.但前面兩項要驗證是否符合.
(Ⅱ)因為已知,所以令.即可求得的關系式.再利用.又得到了一個關于的關系式.從而可得的關系式.又根據.可求出.再根據.即可求出結論.最后要驗證前兩項是否成立.
試題解析:(1)由條件,得 ①
在①中,令,得 ②
,得 ③
③/②得,記,則數列是公比為的等比數列。

時,, ⑤
④-⑤,得,當n≥3時,{}是等比數列.
在①中,令,得,從而,則,所以.
又因為,所以    2分
在①中,令,得,則
在①中,令,得,則
由⑥⑦解得:                     6分
,由

也適應上式,所以.        8分
(2)在①中,令,得,則,所以
在①中,令,得,則,所以,則;代入式,得           12分
由條件
又因,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知數列滿足,數列滿足
(1)求證:數列是等差數列;
(2)設,求滿足不等式的所有正整數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列中,.
(1)求證:是等比數列,并求的通項公式
(2)數列滿足,數列的前n項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知公差不為0的等差數列的前3項和=9,且成等比數列
(1)求數列的通項公式和前n項和
(2)設為數列的前n項和,若對一切恒成立,求實數的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

稱滿足以下兩個條件的有窮數列階“期待數列”:
;②.
(1)若等比數列階“期待數列”,求公比q及的通項公式;
(2)若一個等差數列既是階“期待數列”又是遞增數列,求該數列的通項公式;
(3)記n階“期待數列”的前k項和為
(i)求證:
(ii)若存在使,試問數列能否為n階“期待數列”?若能,求出所有這樣的數列;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是正數組成的數列,,且點在函數的圖象上.
(Ⅰ)求數列的通項公式;
(Ⅱ)若數列滿足,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列的前項和為,若,點在直線上.
⑴求證:數列是等差數列;
⑵若數列滿足,求數列的前項和
⑶設,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知公差不為零的等差數列的前項和,且成等比數列.
(Ⅰ)求數列的通項公式;
(Ⅱ)若數列滿足,求的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列中,,前
(Ⅰ)求證:數列是等差數列; (Ⅱ)求數列的通項公式;
(Ⅲ)設數列的前項和為,是否存在實數,使得對一切正整數都成立?若存在,求的最小值,若不存在,試說明理由.

查看答案和解析>>