中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(12分)已知函數是定義在上的偶函數,已知當時,.
(1)求函數的解析式;
(2)求函數的單調遞增區間;
(3)求在區間上的值域。

(1)
(2)函數的單調遞增區間為
(3)值域為(

解析試題分析:解:(1)∵函數是定義在上的偶函數
∴對任意的都有成立
∴當時,

      4分
(2)圖形如圖所示,函數的單調遞增區間為.(寫成開區間也可以)8分

(3)值域為(     12分
考點:函數的單調性和解析式的運用
點評:解決該試題的關鍵是利用二次函數的性質,以及奇偶性來分析得到函數的解析式,并求解單調性,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數的圖象如圖所示,且與軸相切于原點,若函數的極小值為-4.

(1)求的值;
(2)求函數的遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,的兩個極值點為,線段的中點為.
(1) 如果函數為奇函數,求實數的值;當時,求函數圖象的對稱中心;
(2) 如果點在第四象限,求實數的范圍;
(3) 證明:點也在函數的圖象上,且為函數圖象的對稱中心.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)
已知函數的圖象關于原點對稱,且.
(1)求函數的解析式;
(2)若在[-1,1]上是增函數,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題共12分)
已知函數
(1)若對于定義域內的恒成立,求實數的取值范圍;
(2)設有兩個極值點,求證:
(3)設若對任意的,總存在,使不等式成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,是方程的兩根, 數列是公差為正的等差數列,數列的前項和為,且.
(1)求數列,的通項公式;
(2)記=,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數.
(Ⅰ)函數在區間上是增函數還是減函數?證明你的結論;
(Ⅱ)當時,恒成立,求整數的最大值;
(Ⅲ)試證明:)。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數:.
(1) 當時①求的單調區間;
②設,若對任意,存在,使,求實數取值范圍.
(2) 當時,恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知函數是定義在上的奇函數.
(Ⅰ)求的值;
(Ⅱ)求函數的值域;
(Ⅲ)當時,恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案