如圖所示是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2m,水面寬4m.水位下降1m后,水面寬 m.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,兩條相交線段
、
的四個端點(diǎn)都在拋物線
上,其中,直線
的方程為
,直線
的方程為
.![]()
(1)若
,
,求
的值;
(2)探究:是否存在常數(shù)
,當(dāng)
變化時,恒有
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓C:
+
=1(a>b>0)的離心率e=
,a+b=3.![]()
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交x軸于點(diǎn)N,直線AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m.證明2m-k為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).![]()
(1)求拋物線C的方程;
(2)過點(diǎn)F作直線交拋物線C于A,B兩點(diǎn),若直線AO,BO分別交直線l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,
分別是橢圓
:
的左、右焦點(diǎn),過
作傾斜角為
的直線交橢圓
于
,
兩點(diǎn),
到直線
的距離為
,連接橢圓
的四個頂點(diǎn)得到的菱形面積為
.
(1)求橢圓
的方程;
(2)已知點(diǎn)
,設(shè)
是橢圓
上的一點(diǎn),過
、
兩點(diǎn)的直線
交
軸于點(diǎn)
,若
, 求
的取值范圍;
(3)作直線
與橢圓
交于不同的兩點(diǎn)
,
,其中
點(diǎn)的坐標(biāo)為
,若點(diǎn)
是線段
垂直平分線上一點(diǎn),且滿足
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程.
(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于
?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓M:
=1(a>b>0)的短半軸長b=1,且橢圓上一點(diǎn)與橢圓的兩個焦點(diǎn)構(gòu)成的三角形的周長為6+4
.
(1)求橢圓M的方程;
(2)設(shè)直線l:x=my+t與橢圓M交于A,B兩點(diǎn),若以AB為直徑的圓經(jīng)過橢圓的右頂點(diǎn)C,求t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:![]()
的離心率
,原點(diǎn)到過點(diǎn)
,
的直線的距離是
.
(1)求橢圓
的方程;
(2)若橢圓
上一動點(diǎn)![]()
關(guān)于直線
的對稱點(diǎn)為
,求
的取值范圍;
(3)如果直線
交橢圓
于不同的兩點(diǎn)
,
,且
,
都在以
為圓心的圓上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓![]()
的右焦點(diǎn)為
,直線
與
軸交于點(diǎn)
,若
(其中
為坐標(biāo)原點(diǎn)).
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
上的任意一點(diǎn),
為圓
的任意一條直徑(
、
為直徑的兩個端點(diǎn)),求
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com