中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數的定義域為,若上為增函數,則稱 為“一階比增函數”.
(Ⅰ) 若是“一階比增函數”,求實數的取值范圍;
(Ⅱ) 若是“一階比增函數”,求證:
(Ⅲ)若是“一階比增函數”,且有零點,求證:有解.

(Ⅰ)  (Ⅱ)本小題關鍵是先得到
(Ⅲ)本小題要結合(Ⅱ)的結論來證明。

解析試題分析:解:(I)由題是增函數,
由一次函數性質知
時,上是增函數,
所以 
(Ⅱ)因為是“一階比增函數”,即上是增函數,
,有
所以                
所以
所以   
所以                              
(Ⅲ)設,其中.
因為是“一階比增函數”,所以當時,
,滿足,記
由(Ⅱ)知,同理
所以一定存在,使得
所以一定有解                             
考點:函數的單調性
點評:證明函數在區間上為增(減)函數的方法是:令,若
),則函數為增(減)函數。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知冪函數的圖象與x軸,y軸無交點且關于原點對稱,又有函數f(x)=x2-alnx+m-2在(1,2]上是增函數,g(x)=x-在(0,1)上為減函數.
①求a的值;
②若,數列{an}滿足a1=1,an+1=p(an),(n∈N+),數列{bn},滿足,求數列{an}的通項公式an和sn.
③設,試比較[h(x)]n+2與h(xn)+2n的大小(n∈N+),并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數滿足:),
(1)用反證法證明:不可能為正比例函數;
(2)若,求的值,并用數學歸納法證明:對任意的,均有:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若不等式的解集.求的值;
(2)若的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是奇函數。
(1)求實數a的值;
(2)判斷函數在R上的單調性并用定義法證明;
(3)若函數的圖像經過點,這對任意不等式恒成立,求實數m的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)是(-∞,+∞)上的奇函數,f(x+2)=-f(x),當0≤x≤1時,f(x)=x.
(1)求f(π)的值; 
(2)當-4≤x≤4時,求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內函數f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為常數.
(Ⅰ)當時,判斷函數在定義域上的單調性;
(Ⅱ)當時,求的極值點并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數,不等式都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,函數的圖像在點處的切線平行于軸.
(1)求的值;
(2)求函數的極小值;
(3)設斜率為的直線與函數的圖象交于兩點,(
證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求曲線在點處的切線方程;
(2)若在區間上是減函數,求的取值范圍.

查看答案和解析>>

同步練習冊答案