中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分10分)
如圖,在直三棱柱中,.棱上有兩個動點E,F,且EF =" a" (a為常數).

(Ⅰ)在平面ABC內確定一條直線,使該直線與直線CE垂直;      
(Ⅱ)判斷三棱錐B—CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

(Ⅰ)取AC中點D,連接BD,直線BD即為所求直線(Ⅱ)體積是定值為

解析試題分析:(Ⅰ)取AC中點D,連接BD.

,D為底邊AC中點,∴


,∴直線
  
.    ------5分
(Ⅱ)直線,

EF上的高為線段
由已知條件得

由(Ⅰ)可知,
在等腰三角形ABC中,可求得BD=
.------10分
考點:線面垂直的判定和性質定理及錐體的體積計算
點評:線面垂直的判定:一條直線垂直于平面內兩條相交直線,則這條直線垂直于平面。錐體的底面積為S,高為h,則體積

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知三棱錐中,中點, 中點,且為正三角形。

(Ⅰ)求證://平面
(Ⅱ)求證:平面⊥平面
(III)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(文科)長方體中,是底面對角線的交點.

(Ⅰ) 求證:平面
(Ⅱ) 求證:平面
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)一個四棱錐的直觀圖和三視圖如圖所示:

(1)求證:
(2)求出這個幾何體的體積。
(3)若在PC上有一點E,滿足CE:EP=2:1,求證PA//平面BED。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖所示,在直棱柱中,的中點.

(1)求證:
(2)求證:
(3)在上是否存在一點,使得,若存在,試確定的位置,并判斷與平面是否垂直?若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分) 已知四棱錐底面ABCD,其三視圖如下,若M是PD的中點

⑴ 求證:PB//平面MAC;
⑵ 求直線PC與平面MAC所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)如圖,在直三棱柱中,底面為等邊三角形,且,分別是,的中點.

(1)求證:
(2)求證:
(3) 求直線與平面所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)如圖,在四棱錐中,底面是矩形,分別為線段的中點,⊥底面.

(Ⅰ)求證:∥平面
(Ⅱ)求證:平面^平面
(Ⅲ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.

(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E—PC—A的正弦值.(本題滿分14分)

查看答案和解析>>

同步練習冊答案