中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知在區間[0,1]上是增函數,在區間上是減函數,又
(Ⅰ)求的解析式;
(Ⅱ)若在區間(m>0)上恒有成立,求m的取值范圍.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ),由已知
解得

(Ⅱ)令,即

在區間上恒成立,
考點:本題考查了導數的運用及不等式的解法
點評:導數的應用是高考的一個重點,特別是高次函數的單調性及最值問題往往利用導數解決比用定義法要簡單的多,要注意利用這個工具

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數.
(1) 求的單調區間與極值;
(2)是否存在實數,使得對任意的,當時恒有成立.若存在,求的范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知f(x)=(x∈R)在區間[-1,1]上是增函數.
(Ⅰ)求實數a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分l2分)
已知函數
(1)若,求函數的極小值;
(2)設函數,試問:在定義域內是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函數f(x)的單調區間;
(II)若A,B是函數f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知函數)的圖象為曲線
(Ⅰ)求曲線上任意一點處的切線的斜率的取值范圍;
(Ⅱ)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線的切點的橫坐標的取值范圍;
(Ⅲ)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
設點P在曲線上,從原點向A(2,4)移動,如果直線OP,曲線及直線x=2所圍成的面積分別記為

(Ⅰ)當時,求點P的坐標;
(Ⅱ)當有最小值時,求點P的坐標和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)已知曲線y=
(1)求曲線在x=2處的切線方程;(2)求曲線過點(2,4)的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知數列的前項和為,函數,
(其中均為常數,且),當時,函數取得極小值.
均在函數的圖像上(其中的導函數).
(Ⅰ)求的值;
(Ⅱ)求數列的通項公式.

查看答案和解析>>

同步練習冊答案