(本題滿分15分) 如圖,四邊形
中,
為正三角形,
,
,
與
交于
點(diǎn).將
沿邊
折起,使
點(diǎn)至
點(diǎn),已知
與平面
所成的角為
,且
點(diǎn)在平面
內(nèi)的射影落在
內(nèi).![]()
(Ⅰ)求證:
平面
;
(Ⅱ)若已知二面角
的余弦值為
,求
的大小.
(Ⅰ)只需證
、
即可;(Ⅱ)
。
解析試題分析:(Ⅰ)易知
為
的中點(diǎn),
則
,又
,
又
,
平面
,
所以
平面
(5分)
(Ⅱ)方法一:以
為
軸,
為
軸,過(guò)
垂直于
平面
向上的直線為
軸建立如圖所示空間
直角坐標(biāo)系,則
,![]()
(7分)
易知平面
的法向量為
(8分)
,
設(shè)平面
的法向量為![]()
則由
得,![]()
解得,
,令
,則
(11分)
則![]()
解得,
,即
,即
,
又
,∴
故
.(15分)
考點(diǎn):線面垂直的判定定理;線面角;二面角的求法。
點(diǎn)評(píng):用綜合法求二面角,往往需要作出平面角,這是幾何中一大難點(diǎn),而用向量法求解二面角無(wú)需作出二面角的平面角,只需求出平面的法向量,經(jīng)過(guò)簡(jiǎn)單運(yùn)算即可,從而體現(xiàn)了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面
的兩個(gè)半平面內(nèi)與棱
垂直的異面直線,則二面角的大小就是向量
與
的夾角; ②設(shè)
分別是二面角
的兩個(gè)面α,β的法向量,則向量
的夾角(或其補(bǔ)角)的大小就是二面角的平面角的大小。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有一個(gè)正四棱臺(tái)形狀的油槽,可以裝油190L,假如它的兩底面邊長(zhǎng)分別等于60cm和40cm,求它的深度為多少cm?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,四棱錐
中,底面
為矩形,
平面
,點(diǎn)
分別是
和
的中點(diǎn).![]()
求證:
平面
;
若
, 四棱錐
外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)如圖,在四棱錐
中,底面
為平行四邊形,
,
,
為
中點(diǎn),
平面
,
,
為
中點(diǎn).![]()
(1)證明:
//平面
;
(2)證明:
平面
;
(3)求直線
與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分11分)
如圖示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長(zhǎng)為2的正三角形,俯視圖為半徑等于1的圓.試求這個(gè)幾何體的側(cè)面積與體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)如圖,在底面為直角梯形的四棱錐
中
,
平面
,
,
,
.![]()
(Ⅰ)求證:![]()
;
(Ⅱ)求直線
與平面
所成的角;
(Ⅲ)設(shè)點(diǎn)
在棱
上,
,若
∥平面
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)一個(gè)多面體的直觀圖和三視圖如圖所示,其中
、
分別是
、
的中點(diǎn).
(1)求證:![]()
平面![]()
(2)在線段
上(含
、
端點(diǎn))確定一點(diǎn)
,使得![]()
平面
,并給出證明;
(3)一只小飛蟲(chóng)在幾何體
內(nèi)自由飛,求它飛入幾何體
內(nèi)的概率. ![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =
,AB=BC=2AD=4,
E、F分別是AB、CD上的點(diǎn),且EF∥BC.設(shè)AE =
,G是BC的中點(diǎn).
沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).![]()
(1)當(dāng)
=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,求
的最大值;
(3)當(dāng)
取得最大值時(shí),求二面角D-BF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱柱
的側(cè)棱與底面垂直,
,
,
,
分別是
,
的中點(diǎn),點(diǎn)
在直線
上,且
;
(Ⅰ)證明:無(wú)論
取何值,總有
;
(Ⅱ)當(dāng)
取何值時(shí),直線
與平面
所成的角
最大?并求該角取最大值時(shí)的正切值;
(Ⅲ)是否存在點(diǎn)
,使得平面
與平面
所成的二面角為30º,若存在,試確定點(diǎn)
的位置,若不存在,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com