已知函數(shù)
(
).
(I)若
的定義域和值域均是
,求實(shí)數(shù)
的值;
(II)若
在區(qū)間
上是減函數(shù),且對(duì)任意的
,![]()
,總有
,求實(shí)數(shù)
的取值范圍.
(I) a=2, (II)
.
解析試題分析:(I)研究二次函數(shù)性質(zhì),關(guān)鍵研究對(duì)稱(chēng)軸與定義區(qū)間之間相對(duì)位置關(guān)系. 因?yàn)楹瘮?shù)f(x)對(duì)稱(chēng)軸為x=a,拋物線開(kāi)口向上,在 (1,a)上單調(diào)遞減,則f(1)=a,f(a)=1,代入
解得a=2, (II) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/d/ellw64.png" style="vertical-align:middle;" />在區(qū)間
上是減函數(shù),所以
因此
,所以1離開(kāi)對(duì)稱(chēng)軸的距離最遠(yuǎn),所以在區(qū)間
最大值應(yīng)為
,最小值應(yīng)為
,因此對(duì)任意的
,![]()
,總有
,就可化為
,
,解得
,又
所以![]()
(1)因?yàn)楹瘮?shù)f(x)對(duì)稱(chēng)軸為x=a,拋物線開(kāi)口向上,在 (1,a)上單調(diào)遞減,
則f(1)=a,f(a)=1,代入解得a=2 -6分
(2)可得
,顯然在區(qū)間
最大值應(yīng)為
,最小值應(yīng)為![]()
所以
,解得
-14分
考點(diǎn):二次函數(shù)最值
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)的定義域?yàn)閧x|x∈R,且x≠0},對(duì)定義域內(nèi)的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)>0.
(1)求證:f(x)是偶函數(shù);
(2)求證:f(x)在(0,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
中,
為奇數(shù),
均為整數(shù),且
均為奇數(shù).求證:
無(wú)整數(shù)根。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2014·西安模擬)已知函數(shù)f(x)=2x,g(x)=
+2.
(1)求函數(shù)g(x)的值域.
(2)求滿足方程f(x)-g(x)=0的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
據(jù)環(huán)保部門(mén)測(cè)定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為![]()
.現(xiàn)已知相距18
的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為
,它們連線上任意一點(diǎn)C處的污染指數(shù)
等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè)
(
).
(1)試將
表示為
的函數(shù); (2)若
,且
時(shí),
取得最小值,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(
)
(1)若方程
有3個(gè)不同的根,求實(shí)數(shù)
的取值范圍;
(2)在(1)的條件下,是否存在實(shí)數(shù)
,使得
在
上恰有兩個(gè)極值點(diǎn)
,且滿足
,若存在,求實(shí)數(shù)
的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
.
(1)若
,討論函數(shù)
在區(qū)間
上的單調(diào)性;
(2)若
且
,對(duì)任意的
,試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知![]()
![]()
(1)當(dāng)
時(shí),求
的極大值點(diǎn);
(2)設(shè)函數(shù)
的圖象
與函數(shù)
的圖象
交于
、
兩點(diǎn),過(guò)線段
的中點(diǎn)做
軸的垂線分別交
、
于點(diǎn)
、
,證明:
在點(diǎn)
處的切線與
在點(diǎn)
處的切線不平行.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com