中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ln x--ln a(x>0,a>0且為常數).
(1)當k=1時,判斷函數f(x)的單調性,并加以證明;
(2)當k=0時,求證:f(x)>0對一切x>0恒成立;
(3)若k<0,且k為常數,求證:f(x)的極小值是一個與a無關的常數.
(1)見解析   (2)見解析   (3)見解析
解:(1)當k=1時,
f(x)=ln x-·xx--ln a,
因為f′(x)=·x-x-
=-≤0,
所以函數f(x)在(0,+∞)上是單調減函數.
(2)證明:當k=0時,
f(x)=ln x+x--ln a,故
f′(x)=.
令f′(x)=0,解得x=.
當0<x<時,f′(x)<0,f(x)在上是單調減函數;
當x>時,f′(x)>0,f(x)在上是單調增函數.
所以當x=時,f′(x)有極小值,
為f=2-2ln 2.
因為e>2,所以f(x)的極小值,
為f=2(1-ln 2)=2ln>0.
所以當k=0時,f(x)>0對一切x>0恒成立.
(3)證明:
f(x)=ln x-·xx--ln a,
所以f′(x)=.
令f′(x0)=0,得kx0-2+a=0.
所以
(舍去).
所以x0.
當0<x<x0時,f′(x)<0,f(x)在(0,x0)上是單調減函數;
當x>x0時,f′(x)>0,f(x)在(x0,+∞)上是單調增函數.
因此,當x=x0時,f(x)有極小值f(x0).
又f(x0)=ln-k,
是與a無關的常數,所以ln,-k,均與a無關.
所以f(x0)是與a無關的常數.
故f(x)的極小值是一個與a無關的常數.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=(ax+1)ex.
(1)求函數f(x)的單調區間;
(2)當a>0時,求函數f(x)在區間[-2,0]上的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數在區間上的最大值是(   )
A.B.0C.2D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當時,求函數單調區間;
(2)若函數在區間[1,2]上的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=-x3+ax2-4在x=2處取得極值,若m,n∈[-1,1],則f(m)+f′(n)的最小值是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數,對任意的時,恒成立,則a的范圍為       .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

巳知函數分別是二次函數和三次函數的導函數,它們在同一坐標系內的圖象如圖所示.
(1)若,則        ;
(2)設函數,則的大小關系為        (用“<”連接).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數滿足且當 時,,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數內為增函數,則實數的取值范圍是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案