已知![]()
(1)求函數(shù)
在
上的最小值
(2)對一切的
恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對一切
,都有
成立
(1)
(2)
(3)主要是求出函數(shù)
的最小值![]()
解析試題分析:解:(1)
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
![]()
(2)
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/8/ckrlp1.png" style="vertical-align:middle;" />,
恒成立,![]()
(3)問題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切
,都有
成立
考點(diǎn):導(dǎo)數(shù)的應(yīng)用
點(diǎn)評(píng):導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。本題是應(yīng)用導(dǎo)數(shù)求函數(shù)的最小值、解決不等式中參數(shù)的取值范圍和證明不等式。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
的圖像在
處取得極值4.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)對于函數(shù)
,若存在兩個(gè)不等正數(shù)![]()
,當(dāng)
時(shí),函數(shù)
的值域是
,則把區(qū)間
叫函數(shù)
的“正保值區(qū)間”.問函數(shù)
是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
處取得極值
.
(I)求實(shí) 數(shù)a和b. (Ⅱ)求f(x)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函 數(shù)
.
(1)若曲線
在點(diǎn)
處的切線與直線
垂直,求函數(shù)
的單調(diào)區(qū)間;
(2)若對于
都有
成立,試求
的取值范圍;
(3)記
.當(dāng)
時(shí),函數(shù)
在區(qū)間
上有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
市內(nèi)電話費(fèi)是這樣規(guī)定的,每打一次電話不超過3分鐘付電話費(fèi)0.18元,超過3分鐘而不超過6分鐘的付電話費(fèi)0.36元,依次類推,每次打電話![]()
分鐘應(yīng)付話費(fèi)y元,寫出函數(shù)解析式并畫出函數(shù)圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)試判斷函數(shù)
的單調(diào)性,并說明理由;
(Ⅱ)若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax3+bx2-x(x∈R,a、b是常數(shù),a≠0),且當(dāng)x=1和x=2時(shí),函數(shù)f(x)取得極值.(I)求函數(shù)f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=![]()
有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知奇函數(shù)
在
時(shí)的圖象是如圖所示的拋物線的一部分.![]()
(1)請補(bǔ)全函數(shù)
的圖象;
(2)寫出函數(shù)
的表達(dá)式;
(3)寫出函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
![]()
(I) 解關(guān)于
的不等式 ![]()
(II)若函數(shù)
的圖象恒在函數(shù)
的上方,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com