已知函數(shù)![]()
.
(1)討論函數(shù)
在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)
在
處取得極值,對![]()
,
恒成立,求實數(shù)
的取值范圍.
(Ⅰ)當(dāng)
時
在
上沒有極值點,當(dāng)
時,
在
上有一個極值點.(Ⅱ)
.
解析試題分析:(Ⅰ)
,
當(dāng)
時,
在
上恒成立,函數(shù)
在
單調(diào)遞減,
∴
在
上沒有極值點;
當(dāng)
時,
得
,
得
,
∴
在
上遞減,在
上遞增,即
在
處有極小值.
∴當(dāng)
時
在
上沒有極值點,
當(dāng)
時,
在
上有一個極值點.
(Ⅱ)∵函數(shù)
在
處取得極值,∴
,∴
,
令
,可得
在
上遞減,在
上遞增,
∴
,即
.
考點:本題考查了導(dǎo)數(shù)的運用
點評:求可導(dǎo)函數(shù)的極值的基本步驟為:①求導(dǎo)函數(shù)
;②求方程
=0的根;③檢查
在方程根左右的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)
時,求曲線
在
處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)
存在一個極大值和一個極小值,且極大值與極小值的積為
,求
的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若存在實常數(shù)
和
,使得函數(shù)
和
對其定義域上的任意實數(shù)
分別滿足:
和
,則稱直線
為
和
的“隔離直線”.已知
,
為自然對數(shù)的底數(shù)).
(1)求
的極值;
(2)函數(shù)
和
是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(1)已知函數(shù)h(x)=g(x)+ax3的一個極值點為1,求a的取值;
(2) 求函數(shù)
在
上的最小值;
(3)對一切
,
恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(I)若曲線
與曲線
在它們的交點
處具有公共切線,求
的值;
(II)當(dāng)
時,若函數(shù)
在區(qū)間
內(nèi)恰有兩個零點,求
的取值范圍;
(III)當(dāng)
時,求函數(shù)
在區(qū)間
上的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時,求
的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)
在點![]()
處的切線為
,直線
與
軸相交于點
.若點
的縱坐標(biāo)恒小于1,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若不等式
在區(qū)間(0,+
上恒成立,求
的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
.(
)
(1)若函數(shù)
有三個零點
,且
,
,求函數(shù)
的單調(diào)區(qū)間;
(2)若
,
,試問:導(dǎo)函數(shù)
在區(qū)間(0,2)內(nèi)是否有零點,并說明理由.
(3)在(Ⅱ)的條件下,若導(dǎo)函數(shù)
的兩個零點之間的距離不小于
,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com