中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(1)若函數的圖象在處的切線與軸平行,求的值;
(2)若,恒成立,求的取值范圍.

(1);(2).

解析試題分析:本題主要考查導數的運算、利用導數求曲線的切線、利用導數判斷函數的單調性、利用導數求函數的最值、恒成立問題等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力,考查學生的分類討論思想、函數思想.第一問,對求導,將切點的橫坐標代入得到切線的斜率,由于與x軸平行,所以斜率為0,解出a的值;第二問,由于,恒成立,轉化為當時,,所以本問的主要任務是求的最小值,對求導,由于的正負的判斷不容易,所以進行二次求導進行最值、單調性的判斷.
試題解析:(1)                                       2分
因為處切線與軸平行,即在切線斜率為,∴.                           5分
(2),令,則,
所以內單調遞增,
(i)當時,,內單調遞增,要想只需要,解得,從而                            8分
(ii)當時,由內單調遞增知,
存在唯一使得,有,令
,令解得,從而對于處取最小值,
,又
,從而應有,即
,解得,由可得,有,綜上所述,.             12分
考點:導數的運算、利用導數求曲線的切線、利用導數判斷函數的單調性、利用導數求函數的最值、恒成立問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,求曲線在點處的切線方程;
(2)求函數的單調區間;
(3)設函數.若至少存在一個,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某水產養殖場擬造一個無蓋的長方體水產養殖網箱,為了避免混養,箱中要安裝一些篩網,其平面圖如下,如果網箱四周網衣(圖中實線部分)建造單價為每米56元,篩網(圖中虛線部分)的建造單價為每米48元,網箱底面面積為160平方米,建造單價為每平方米50元,網衣及篩網的厚度忽略不計.
(1)把建造網箱的總造價y(元)表示為網箱的長x(米)的函數,并求出最低造價;
(2)若要求網箱的長不超過15米,寬不超過12米,則當網箱的長和寬各為多少米時,可使總造價最低?(結果精確到0.01米)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lnx-mx(mR).
(1)若曲線y=f(x)過點P(1,-1),求曲線y=f(x)在點P處的切線方程;
(2)求函數f(x)在區間[1,e]上的最大值;
(3)若函數f(x)有兩個不同的零點x1,x2,求證:x1x2>e2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某風景區在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設計為直線段小路,在路的兩側邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)

(1)設(弧度),將綠化帶總長度表示為的函數
(2)試確定的值,使得綠化帶總長度最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若方程內有兩個不等的實根,求實數m的取值范圍;(e為自然對數的底數)
(2)如果函數的圖象與x軸交于兩點.求證:(其中正常數).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,試確定函數的單調區間;
(2)若,且對于任意恒成立,試確定實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)當時,求的最小值;
(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線.
(1)求曲線在點()處的切線方程;
(2)若存在使得,求的取值范圍.

查看答案和解析>>

同步練習冊答案