設(shè)函數(shù)
.
(1)若
,試求函數(shù)
的單調(diào)區(qū)間;
(2)過坐標原點
作曲線
的切線,證明:切點的橫坐標為1;
(3)令
,若函數(shù)
在區(qū)間(0,1]上是減函數(shù),求
的取值范圍.
(1)
的減區(qū)間為
,增區(qū)間![]()
(2)導(dǎo)數(shù)的幾何意義的運用,理解切線的斜率即為該點的導(dǎo)數(shù)值既可以得到求證。
(3)![]()
解析試題分析:解: (1)
時,
1 分![]()
3分![]()
的減區(qū)間為
,增區(qū)間
5分
(2)設(shè)切點為
,![]()
切線的斜率
,又切線過原點![]()
7分
滿足方程
,由
圖像可知![]()
有唯一解
,切點的橫坐標為1; -8分
或者設(shè)
,![]()
,且
,方程
有唯一解 -9分
(3)
,若函數(shù)
在區(qū)間(0,1]上是減函數(shù),
則
,所以
---(*) 10分![]()
![]()
若
,則![]()
在
遞減,![]()
即不等式
恒成立 11分
若
,![]()
在
上遞增,![]()
![]()
,即
,
上遞增,![]()
這與
,
矛盾 13分
綜上所述,
14分
解法二:
,若函數(shù)
在區(qū)間(0,1]上是減函數(shù),
則
,所以
10分
顯然
,不等式成立
當
時,
恒成立 11分
設(shè)![]()
設(shè)![]()
在
上遞增,
所以
12分
在
上遞減,![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若在
上至少存在一點
,使得
成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
),其圖像在點(1,
)處的切線方程為
.
(1)求
,
的值;
(2)求函數(shù)
的單調(diào)區(qū)間和極值;
(3)求函數(shù)
在區(qū)間[-2,5]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
,其中
為實數(shù).
(1)若
在
上是單調(diào)減函數(shù),且
在
上有最小值,求
的取值范圍;
(2)若
在
上是單調(diào)增函數(shù),試求
的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知函數(shù)
.
(I)求f(x)的極小值和極大值;
(II)當曲線y = f(x)的切線
的斜率為負數(shù)時,求
在x軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖象在點
處的切線斜率為
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)判斷方程
根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點
,使得曲線
在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)
的單調(diào)增區(qū)間;
(2)設(shè)關(guān)于x的不等式
≥
的解集為M,且集合
,求實數(shù)t的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com