預(yù)計(jì)某地區(qū)明年從年初開始的前
個(gè)月內(nèi),對某種商品的需求總量
(萬件)近似滿足:
N*,且
)
(1)寫出明年第
個(gè)月的需求量
(萬件)與月份
的函數(shù)關(guān)系式,并求出哪個(gè)月份的需求量超過
萬件;
(2)如果將該商品每月都投放到該地區(qū)
萬件(不包含積壓商品),要保證每月都滿足供應(yīng),
應(yīng)至少為多少萬件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),求函數(shù)f(x)在[1,e]上的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時(shí),
(其中e是自然界對數(shù)的底,
)
(Ⅰ)設(shè)
,求證:當(dāng)
時(shí),
;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)
時(shí),
的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)當(dāng)
時(shí),求曲線
在
處的切線方程;
(2)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù)
,若對于
[1,2],
[0,1],使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(Ⅰ)若
在
是增函數(shù),求b的取值范圍;
(Ⅱ)若
在
時(shí)取得極值,且
時(shí),
恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),
取得極值.
① 若
,求函數(shù)
在
上的最小值;
② 求證:對任意
,都有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
的定義域?yàn)椋?,
).
(Ⅰ)求函數(shù)
在
上的最小值;
(Ⅱ)設(shè)函數(shù)
,如果
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
在
處的切線垂直于直線
,求該點(diǎn)的切線方程,并求此時(shí)函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
對任意的
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com