中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設函數
(1)當時,求曲線處的切線方程;
(2)當時,求函數的單調區間;
(3)在(2)的條件下,設函數,若對于[1,2],[0,1],使成立,求實數的取值范圍.

(1)處的切線方程為;(2)函數的單調增區間為;單調減區間為;(3).

解析試題分析:(1)首先求函數的定義域,利用導數的幾何意義求得處的切線的斜率,再利用直線的點斜式方程求得處的切線方程;(2)分別解不等式可得函數的單調遞增區間、單調遞減區間;(3)由已知“對于[1,2],使成立”上的最小值不大于上的最小值,先分別求函數的最小值,最后解不等式得實數的取值范圍.
試題解析:函數的定義域為,                      1分
                                 2分
(1)當時,,       3分

,                                           4分
處的切線方程為.                    5分
(2).                 
,或時, ;                             6分
時, .                                        7分
時,函數的單調增區間為;單調減區間為.   8分
(如果把單調減區間寫為,該步驟不得分)
(3)當時,由(2)可知函數上為增函數,
∴函數在[1,2]上的最小值為                9分
若對于[1,2],使成立上的最小值不大于<

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)如果對于任意的總成立,求實數的取值范圍;
(Ⅲ)設函數,過點作函數圖象的所有切線,令各切點得橫坐標構成數列,求數列的所有項之和的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的定義域為.
(I)求函數上的最小值;
(Ⅱ)對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為常數。
(Ⅰ)當時,判斷函數在定義域上的單調性;
(Ⅱ)若函數有極值點,求的取值范圍及的極值點。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內單調遞減,求滿足此條件的實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

預計某地區明年從年初開始的前個月內,對某種商品的需求總量 (萬件)近似滿足:N*,且
(1)寫出明年第個月的需求量(萬件)與月份 的函數關系式,并求出哪個月份的需求量超過萬件;
(2)如果將該商品每月都投放到該地區萬件(不包含積壓商品),要保證每月都滿足供應, 應至少為多少萬件?(積壓商品轉入下月繼續銷售)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的最大值;
(2)若函數沒有零點,求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數有極小值
(Ⅰ)求實數的值;
(Ⅱ)若,且對任意恒成立,求的最大值為.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為正實數,.
(I)若的一個極值點,求的值;
(II)求的單調區間.

查看答案和解析>>

同步練習冊答案