某風(fēng)景區(qū)在一個直徑AB為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)A與圓
弧上的一點(diǎn)C之間設(shè)計(jì)為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點(diǎn)C到點(diǎn)B設(shè)計(jì)為沿弧
的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計(jì))
(1)設(shè)
(弧度),將綠化帶總長度表示為
的函數(shù)
;
(2)試確定
的值,使得綠化帶總長度最大.![]()
(1)
,
,(2)當(dāng)
時,綠化帶總長度最大.
解析試題分析:(1)解實(shí)際問題應(yīng)用題,關(guān)鍵正確理解題意,正確列出等量關(guān)系或函數(shù)關(guān)系式.本題要注意著重號. 綠化帶總長度
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=x3-3x2+2x
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
等于2AC與弧長BC之和. 在直角三角形
中,
,
,所以
.由于
,所以弧
的長為
.所以
,作為函數(shù)解析式,必須明確其定義域,
.(2)利用導(dǎo)數(shù)求
最大值. 令
,則
,列表分析可知當(dāng)
時,
取極大值,即為最大值.
【解】(1)如圖,連接
,設(shè)圓心為
,連接
.
在直角三角形
中,
,
,
所以
.
由于
,所以弧
的長為
. 3分
所以
,
即
,
. 7分
(2)
, 9分
令
,則
, 11分
列表如下:![]()
![]()
![]()
![]()
![]()
+ 0 ![]()
![]()
![]()
![]()
西城學(xué)科專項(xiàng)測試系列答案
小考必做系列答案
小考實(shí)戰(zhàn)系列答案
小考復(fù)習(xí)精要系列答案
小考總動員系列答案
小升初必備沖刺48天系列答案
68所名校圖書小升初高分奪冠真卷系列答案
伴你成長周周練月月測系列答案
小升初金卷導(dǎo)練系列答案
萌齊小升初強(qiáng)化模擬訓(xùn)練系列答案
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
![]()
為自然對數(shù)的底數(shù)).
(1)求曲線
在
處的切線方程;
(2)若
是
的一個極值點(diǎn),且點(diǎn)
,
滿足條件:
.
(。┣
的值;
(ⅱ)求證:點(diǎn)
,
,
是三個不同的點(diǎn),且構(gòu)成直角三角形.
(1)在
處的切線平行于直線
,求
點(diǎn)的坐標(biāo);
(2)求過原點(diǎn)的切線方程.![]()
(1)若函數(shù)
的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)
的圖象上任意一點(diǎn)的切線斜率為k,試求
的充要條件;
(3)若函數(shù)
的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證
.
,其中
為實(shí)數(shù).
(1)當(dāng)
時,求函數(shù)
在區(qū)間
上的最大值和最小值;
(2)若對一切的實(shí)數(shù)
,有
恒成立,其中
為
的導(dǎo)函數(shù),求實(shí)數(shù)
的取值范圍.
.
(1)當(dāng)
時,求函數(shù)
的單調(diào)增區(qū)間;
(2)當(dāng)
時,求函數(shù)
在區(qū)間
上的最小值;
(3)記函數(shù)
圖象為曲線
,設(shè)點(diǎn)
,
是曲線
上不同的兩點(diǎn),點(diǎn)
為線段
的中點(diǎn),過點(diǎn)
作
軸的垂線交曲線
于點(diǎn)
.試問:曲線
在點(diǎn)
處的切線是否平行于直線
?并說明理由.
,其導(dǎo)函數(shù)
的圖象經(jīng)過點(diǎn)
,
,如圖所示.
(1)求
的極大值點(diǎn);
(2)求
的值;
(3)若
,求
在區(qū)間
上的最小值.![]()
,(其中常數(shù)
)
(1)當(dāng)
時,求曲線在
處的切線方程;
(2)若存在實(shí)數(shù)
使得不等式
成立,求
的取值范圍.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號