已知函數(shù)
在
與
時(shí)都取得極值.
(1)求
的值與函數(shù)
的單調(diào)區(qū)間;
(2)若對(duì)
,不等式
恒成立,求
的取值范圍.
(1)以函數(shù)
的遞增區(qū)間是
與
,遞減區(qū)間是
;
(2)
。
解析試題分析:(1)![]()
由
,
得![]()
,函數(shù)
的單調(diào)區(qū)間如表:
所以函數(shù) ![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
極大值 ¯ 極小值
的遞增區(qū)間是
與
,遞減區(qū)間是
;
(2)
,
當(dāng)
時(shí),
為極大值,而
,
則
為最大值,要使
恒成立,
則只需要
,得
。
考點(diǎn):本題主要考查利用導(dǎo)數(shù)一件合適的單調(diào)性、極值,不等式恒成立問題。
點(diǎn)評(píng):中檔題,屬于導(dǎo)數(shù)應(yīng)用的基本問題,不等式恒成立問題,注意轉(zhuǎn)化成求函數(shù)的最值問題,應(yīng)用導(dǎo)數(shù)使問題得解。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若曲線
在
和
處的切線互相平行,求
的值;
(2)求
的單調(diào)區(qū)間;
(3)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
為常數(shù),e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)
時(shí),證明
恒成立;
(Ⅱ)若
,且對(duì)于任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(Ⅰ)當(dāng)
=1時(shí),求
在(1,
)的切線方程
(Ⅱ)當(dāng)
時(shí),
,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若在
上至少存在一點(diǎn)
,使得
>
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中常數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)如果函數(shù)
在公共定義域D上,滿足
,那么就稱
為
與
的“和諧函數(shù)”.設(shè)
,求證:當(dāng)
時(shí),在區(qū)間
上,函數(shù)
與
的“和諧函數(shù)”有無窮多個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若對(duì)任意的
恒成立,求實(shí)數(shù)
的最小值.
(2)若
且關(guān)于
的方程
在
上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)設(shè)各項(xiàng)為正的數(shù)列
滿足:
求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
R .
(1)討論
的單調(diào)性;
(2)若
在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
, 當(dāng)
時(shí),若存在
,對(duì)于任意的
,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com