(本題滿分12分) 設(shè)函數(shù)
.
(Ⅰ)判斷
能否為函數(shù)
的極值點(diǎn),并說(shuō)明理由;
(Ⅱ)若存在
,使得定義在
上的函數(shù)
在
處取得最大值,求實(shí)數(shù)
的最大值.
(Ⅰ)當(dāng)
時(shí),
是
的極小值點(diǎn);(Ⅱ)
解析試題分析:(Ⅰ)
,令
,得
; 2’
當(dāng)
時(shí),
,于是
在
單調(diào)遞增,在
單調(diào)遞減,
在
單調(diào)遞增.
故當(dāng)
時(shí),
是
的極小值點(diǎn) 2’
(Ⅱ)
.
由題意,當(dāng)
時(shí),
恒成立 2’
易得
,令
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e3/c/1a1tk2.png" style="vertical-align:middle;" />必然在端點(diǎn)處取得最大值,即
4’
即
,即
,解得,
,
所以
的最大值為
2’
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn),綜合考查運(yùn)用知識(shí)分析和解決問(wèn)題的能力,中等題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(I)當(dāng)
時(shí),討論函數(shù)
的單調(diào)性:
(Ⅱ)若函數(shù)
的圖像上存在不同兩點(diǎn)
,
,設(shè)線段
的中點(diǎn)為
,使得
在點(diǎn)
處的切線
與直線
平行或重合,則說(shuō)函數(shù)
是“中值平衡函數(shù)”,切線
叫做函數(shù)
的“中值平衡切線”.
試判斷函數(shù)
是否是“中值平衡函數(shù)”?若是,判斷函數(shù)
的“中值平衡切線”的條數(shù);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-
.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個(gè)不同的根,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
,
(1)若函數(shù)
在
處的切線方程為
,求實(shí)數(shù)
,
的值;
(2)若
在其定義域內(nèi)單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,是否存在實(shí)數(shù)
,使函數(shù)在
上遞減,在
上遞增?若存在,求出所有
值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(I)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(II)在區(qū)間
內(nèi)至少存在一個(gè)實(shí)數(shù)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.(1)求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
.若至少存在一個(gè)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
, 其中
,
是
的導(dǎo)函數(shù).
(Ⅰ)若
,求函數(shù)
的解析式;
(Ⅱ)若
,函數(shù)
的兩個(gè)極值點(diǎn)為
滿足
. 設(shè)
, 試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知函數(shù)
是實(shí)數(shù)集R上的奇函數(shù),且
在R上為增函數(shù)。
(Ⅰ)求
的值;
(Ⅱ)求
在
恒成立時(shí)的實(shí)數(shù)t的取值范圍。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com