(本題滿分12分)
已知橢圓
的兩焦點是
,離心率
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
在橢圓
上,且
,求DPF1F2的面積.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
左、右焦點分別為F1、F2,點
,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設直線
與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線
過定點,并求該定點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓M的中心為坐標原點,且焦點在x軸上,若M的一個頂點恰好是拋物線
的焦點,M的離心率
,過M的右焦點F作不與坐標軸垂直的直線
,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設點N(t,0)是一個動點,且
,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本大題滿分14分)
已知△
的兩個頂點
的坐標分別是
,
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當
時,過點
的直線
交曲線
于
兩點,設點
關于
軸的對稱點為
(
不重合).求證直線
與
軸的交點為定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構成等差數列.![]()
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F2N⊥l.求四邊形F1MNF2面積S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
、
分別是橢圓
的左、右焦點。
(1)若
是第一象限內該橢圓上的一點,
,求點P的坐標;
(2)設過定點M(0,2)的直線
與橢圓交于不同的兩點A、B,且
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com