已知-1≤x≤2,求函數(shù)f(x)=3+2·3x+1-9x的值域.
函數(shù)f(x)的值域?yàn)閇-24,12].
解析試題分析:利用換元法,轉(zhuǎn)化為二次函數(shù),利用配方法,根據(jù)函數(shù)的定義域,即可求得函數(shù)f(x)的值域.
解:f(x)=3+2·3x+1-9x=-(3x)2+6·3x+3.
令3x=t,
則y=-t2+6t+3=-(t-3)2+12.
∵-1≤x≤2,∴
≤t≤9. ------------------------6分
∴當(dāng)t=3,即x=1時(shí),y取得最大值12;
當(dāng)t=9,即x=2時(shí),y取得最小值-24,
即f(x)的最大值為12,最小值為-24.
∴函數(shù)f(x)的值域?yàn)閇-24,12]. -----------------12分
考點(diǎn):本題主要考查了二次函數(shù)的最值問(wèn)題的研究。
點(diǎn)評(píng):解決該試題的關(guān)鍵是函數(shù)值域的求解,考查換元法的運(yùn)用,運(yùn)用換元轉(zhuǎn)化為二次函數(shù)求值域問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知
:
(1)用定義法證明函數(shù)
是
上的增函數(shù);
(2)是否存在實(shí)數(shù)
使函數(shù)
為奇函數(shù)?若存在,請(qǐng)求出
的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
是偶函數(shù),且
時(shí),
。
(1)求當(dāng)
>0時(shí)
的解析式; (2) 設(shè)
,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù)
。
(Ⅰ)討論函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
在
恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)已知函數(shù)![]()
(1)當(dāng)
的取值范圍;
(2)是否存在這樣的實(shí)數(shù)
,使得函數(shù)
在區(qū)間
上為減函數(shù),且最大值為1,若存在,求出
值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
是定義在
上的奇函數(shù),且
。
(1)求函數(shù)
的解析式;
(2)用單調(diào)性的定義證明
在
上是增函數(shù);
(3)解不等式
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù)
:
(1)寫(xiě)出此函數(shù)的定義域和值域;
(2)證明函數(shù)在
為單調(diào)遞減函數(shù);
(3)試判斷并證明函數(shù)
的奇偶性.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com