拋物線
在點
,
處的切線垂直相交于點
,直線
與橢圓
相交于
,
兩點.![]()
(1)求拋物線
的焦點
與橢圓
的左焦點
的距離;
(2)設點
到直線
的距離為
,試問:是否存在直線
,使得
,
,
成等比數列?若存在,求直線
的方程;若不存在,請說明理由.
(1)
;(2)不存在.
解析試題分析:(1)分別求出拋物線與橢圓的焦點,利用兩點間距離公式求解;(2)設直線
與拋物線相交于
與橢圓相交于
,
,所以直線與拋物線方程聯立,得到
和
然后利用
,求出切線
,
的斜率,利用切線垂直,
,解出m,然后分別設出過
點的切線方程,求出交點
的坐標,利用點到直線的距離公式求
,直線與曲線相交的弦長公式求
,若
,
,
成等比數列,則
,化簡等式,通過
看方程實根情況.
試題解析:(I)拋物線
的焦點
, 1分
橢圓
的左焦點
, 2分
則
. 3分
(II)設直線
,
,
,
,
,
由
,得
, 4分
故
,
.
由
,得
,
故切線
,
的斜率分別為
,
,
再由
,得
,
即
,
故
,這說明直線
過拋物線
的焦點
. 7分
由
,得
,
,即
. 8分
于是點
到直線
的距離
. 9分
由
,得
, 10分
從而
, 11分
同理,
. 12分
若
,
,
成等比數列,則
, 13分
即
,
化簡整理,得![]()
![]()
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,
=λ,求點M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面五邊形
關于直線
對稱(如圖(1)),
,
,將此圖形沿
折疊成直二面角,連接
、
得到幾何體(如圖(2))![]()
(1)證明:
平面
;
(2)求平面
與平面
的所成角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知點
,
是動點,且
的三邊所在直線的斜率滿足
.
(1)求點
的軌跡
的方程;
(2)若
是軌跡
上異于點
的一個點,且
,直線
與
交于點
,問:是否存在點
,使得
和
的面積滿足
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的頂點在坐標原點
,對稱軸為
軸,焦點為
,拋物線上一點
的橫坐標為2,且
.
(1)求拋物線的方程;
(2)過點
作直線
交拋物線于
,
兩點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,
是橢圓
的左、右頂點,橢圓
的離心率為
,右準線
的方程為
.![]()
(1)求橢圓方程;
(2)設
是橢圓
上異于
的一點,直線
交
于點
,以
為直徑的圓記為
. ①若
恰好是橢圓
的上頂點,求
截直線
所得的弦長;
②設
與直線
交于點
,試證明:直線
與
軸的交點
為定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
:
的離心率為
,點
為其下焦點,點
為坐標原點,過
的直線
:
(其中
)與橢圓
相交于
兩點,且滿足:
.![]()
(1)試用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點
和
,圓
是以
為圓心,半徑為
的圓,點
是圓
上任意一點,線段
的垂直平分線
和半徑
所在的直線交于點
.
(Ⅰ)當點
在圓上運動時,求點
的軌跡方程
;
(Ⅱ)已知
,
是曲線
上的兩點,若曲線
上存在點
,滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com