已知函數(shù)
,點
為一定點,直線
分別與函數(shù)
的圖象和
軸交于點
,
,記
的面積為
.
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時, 若
,使得
, 求實數(shù)
的取值范圍.
(1)
的單調(diào)遞增區(qū)間為![]()
的單調(diào)遞增區(qū)間為
;
(2)
.
解析試題分析:本題考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值等基礎(chǔ)知識,考查函數(shù)思想、分類討論思想、化歸與轉(zhuǎn)化思想.第一問,數(shù)形結(jié)合得到
的表達(dá)式,將
代入,因為
中有絕對值,所以分
和
進(jìn)行討論,去掉絕對值,對
求導(dǎo)判斷函數(shù)的單調(diào)性;第二問,先由
和
的范圍去掉
中的絕對值符號,然后對原已知進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化為
,所以下面求
是關(guān)鍵,對
求導(dǎo),令
解出方程的根,但是得通過
的范圍判斷根
在不在
的范圍內(nèi),所以進(jìn)行討論,分別求導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,確定最值的位置.
試題解析:(I) 因為
,其中
2分
當(dāng)
,
,其中![]()
當(dāng)
時,
,
,
所以
,所以
在
上遞增, 4分
當(dāng)
時,
,
,
令
, 解得
,所以
在
上遞增
令
, 解得
,所以
在
上遞減 7分
綜上,
的單調(diào)遞增區(qū)間為
,
,
的單調(diào)遞增區(qū)間為
.
(II)因為
,其中![]()
當(dāng)
,
時,![]()
因為
,使得
,所以
在
上的最大值一定大于等于![]()
,令
,得
8分
當(dāng)
時,即
時
對
成立,
單調(diào)遞增
所以當(dāng)
時,
取得最大值![]()
令
,解得
,
所以
&n
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
且
.
(Ⅰ) 當(dāng)
,求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)若
時,函數(shù)
有極值,求函數(shù)
圖象的對稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù)
(
是自然對數(shù)的底數(shù)),是否存在a使
在
上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖象在
上連續(xù),定義:
,
.其中,
表示函數(shù)
在
上的最小值,
表示函數(shù)
在
上的最大值.若存在最小正整數(shù)
,使得
對任意的
成立,則稱函數(shù)
為
上的“
階收縮函數(shù)”.
(Ⅰ)若
,試寫出
,
的表達(dá)式;
(Ⅱ)已知函數(shù)
,試判斷
是否為
上的“
階收縮函數(shù)”.如果是,求出對應(yīng)的
;如果不是,請說明理由;
(Ⅲ)已知
,函數(shù)
是
上的2階收縮函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場從生產(chǎn)廠家以每件20元購進(jìn)一批商品,若該商品零售價定為
元,則銷售量
(單位:件)與零售價
(單位:元)有如下關(guān)系:
,問該商品零售價定為多少元時毛利潤
最大,并求出最大毛利潤.(毛利潤
銷售收入
進(jìn)貨支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
R,
,
(1)求函數(shù)f(x)的值域;
(2)記函數(shù)
,若
的最小值與
無關(guān),求
的取值范圍;
(3)若
,直接寫出(不需給出演算步驟)關(guān)于
的方程
的解集
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(I)求函數(shù)
的單調(diào)遞減區(qū)間;
(II)若
在
上恒成立,求實數(shù)
的取值范圍;
(III)過點
作函數(shù)
圖像的切線,求切線方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實數(shù)
的取值范圍;
(3)是否存在最小的正整數(shù)
,使得當(dāng)
時,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,若
在點
處的切線斜率為
.
(Ⅰ)用
表示
;
(Ⅱ)設(shè)
,若
對定義域內(nèi)的
恒成立,求實數(shù)
的取值范圍;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com