設(shè)函數(shù)
(
,
為常數(shù))
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)若
,證明:當(dāng)
時(shí),
.
①②見(jiàn)題解析
解析試題分析:(Ⅰ)求函數(shù)的導(dǎo)數(shù),分類(lèi)討論二次函數(shù)的零點(diǎn)情況,確定導(dǎo)函數(shù)的正負(fù)取值區(qū)間,進(jìn)一步確定原函數(shù)的單調(diào)性. (Ⅱ)先把原不等式等價(jià)轉(zhuǎn)化為
,由于我們只能運(yùn)用求導(dǎo)的方法來(lái)研究這個(gè)函數(shù)的值域,而此函數(shù)由于求導(dǎo)后不能繼續(xù)判斷導(dǎo)函數(shù)的正負(fù)區(qū)間,故利用均值不等式進(jìn)行放縮,
后,函數(shù)
可以通過(guò)求導(dǎo)研究值域,且![]()
恒成立是![]()
恒成立的充分條件,注意需要二次求導(dǎo).
試題解析:(Ⅰ)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/79/8/p3kbc.png" style="vertical-align:middle;" />,
,
(1)當(dāng)
時(shí),
解得
或
;
解得![]()
所以函數(shù)
在
,
上單調(diào)遞增,在
上單調(diào)遞減;
(2)當(dāng)
時(shí),
對(duì)
恒成立,所以函數(shù)
在
上單調(diào)遞增;
(3)當(dāng)
時(shí),
解得
或
;
解得![]()
所以函數(shù)
在
,
上單調(diào)遞增,在
上單調(diào)遞減. ……(6分)
(Ⅱ)證明:不等式等價(jià)于![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/76/7/kuzsx.png" style="vertical-align:middle;" />, 所以
,
因此
令
, 則![]()
令
得:當(dāng)
時(shí)
,
所以
在
上單調(diào)遞減,從而
. 即
,![]()
在
上單調(diào)遞減,得:
,
當(dāng)
時(shí),
.. ……(12分)
考點(diǎn):1.函數(shù)導(dǎo)數(shù)的求法;2.導(dǎo)數(shù)的應(yīng)用;3.均值不等式;4.放縮法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中
且
.
(I)求函數(shù)
的單調(diào)區(qū)間;
(II)當(dāng)
時(shí),若存在
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=
x
-ax+(a-1)
,
.
(1)討論函數(shù)
的單調(diào)性;(2)若
,設(shè)
,
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對(duì)任意x
,x![]()
![]()
,x![]()
x
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)若
,且
在區(qū)間
內(nèi)存在極值,求整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的極值;
(Ⅱ)若對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的導(dǎo)函數(shù)是
,
在
處取得極值,且
.
(Ⅰ)求
的極大值和極小值;
(Ⅱ)記
在閉區(qū)間
上的最大值為
,若對(duì)任意的![]()
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)
是曲線
上的任意一點(diǎn).當(dāng)
時(shí),求直線OM斜率的最小值,據(jù)此判斷
與
的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
與
的圖像都過(guò)點(diǎn)
,且它們?cè)邳c(diǎn)
處有公共切線.
(1)求函數(shù)
和
的表達(dá)式及在點(diǎn)
處的公切線方程;
(2)設(shè)
,其中
,求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)
在
上的最大值和最小值.
(2)過(guò)點(diǎn)
作曲線
的切線,求此切線的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com