已知△ABC中, 點(diǎn)A,B的坐標(biāo)分別為A(-
,0),B(
,0)點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C坐標(biāo)為(
,1),求以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程:
(Ⅱ)過(guò)點(diǎn)P(m,0)作傾斜角為
的直線l交(1)中曲線于M,N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值.
(Ⅰ)橢圓方程為
;(Ⅱ)
.
解析試題分析:(Ⅰ)由橢圓定義易求;(Ⅱ)此題是直線與橢圓位置關(guān)系的問(wèn)題,可采用設(shè)而不求的解題方法,設(shè)
,由已知可得直線
的方程為
,代入橢圓方程,得到關(guān)于
的一元二次方程,注意到點(diǎn)P(m,0)不一定在橢圓內(nèi)部,需對(duì)方程是否有解討論, 點(diǎn)
恰在以線段
為直徑的圓上,說(shuō)明
,它們的斜率互為負(fù)倒數(shù),利用根與系數(shù)關(guān)系,建立方程,從而求出實(shí)數(shù)m的值.此題易錯(cuò)點(diǎn),不知對(duì)方程是否有解討論.
試題解析:(Ⅰ)設(shè)橢圓方程
,
,
橢圓方程為
;
(Ⅱ)直線
的方程為
,令
,聯(lián)立方程得:![]()
,
,
若
恰在以線段
為直徑的圓上,則
,即
,
,解得
,
,
符合題意
考點(diǎn):橢圓的方程,直線與橢圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力、化簡(jiǎn)能力以及數(shù)形結(jié)合的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:
+
=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°![]()
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40
,求a,b的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),以F1,F2為焦點(diǎn)的橢圓C過(guò)點(diǎn)
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)![]()
,過(guò)點(diǎn)F2作直線
與橢圓C交于A,B兩點(diǎn),且
,若
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
知橢圓
的離心率為
,定點(diǎn)
,橢圓短軸的端點(diǎn)是
,且
.
(1)求橢圓
的方程;
(2)設(shè)過(guò)點(diǎn)
且斜率不為0的直線交橢圓
于
兩點(diǎn).試問(wèn)
軸上是否存在異于
的定點(diǎn)
,使
平分
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知經(jīng)過(guò)點(diǎn)A(-4,0)的動(dòng)直線l與拋物線G:
相交于B、C,當(dāng)直線l的斜率是
時(shí),
.
(Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某跳水運(yùn)動(dòng)員在一次跳水訓(xùn)練時(shí)的跳水曲線為如圖所示的拋物線一段,已知跳水板
長(zhǎng)為2m,跳水板距水面
的高
為3m,
=5m,
=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時(shí)跳水曲線應(yīng)在離起跳點(diǎn)
m(
)時(shí)達(dá)到距水面最大高度4m,規(guī)定:以
為橫軸,
為縱軸建立直角坐標(biāo)系.![]()
(1)當(dāng)
=1時(shí),求跳水曲線所在的拋物線方程;
(2)若跳水運(yùn)動(dòng)員在區(qū)域
內(nèi)入水時(shí)才能達(dá)到壓水花的訓(xùn)練要求,求達(dá)到壓水花的訓(xùn)練要求時(shí)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
的左頂點(diǎn)為
,
是橢圓
上異于點(diǎn)
的任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于點(diǎn)
對(duì)稱(chēng).![]()
(1)若點(diǎn)
的坐標(biāo)為
,求
的值;
(2)若橢圓
上存在點(diǎn)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓
的左焦點(diǎn)為
,離心率為
,過(guò)點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長(zhǎng)為
.
(1) 求橢圓方程.
(2) 過(guò)點(diǎn)
的直線
與橢圓交于不同的兩點(diǎn)
,當(dāng)
面積最大時(shí),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
(a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓
上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過(guò)點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com