已知橢圓C:
(a>b>0)的兩個焦點和短軸的兩個端點都在圓
上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點M(2,0),且與橢圓C相交于A, B兩點.試探討k為何值時,三角形OAB為直角三角形.
(I)
(II)![]()
解析試題分析:(I)由已知可得b=c=1,再由a2=b2+c2,解出a即可.
(II)設A(x1,y1),B(x2,y2),直線AB的方程為y=k(x-2),代入橢圓
中,得到關于x的一元二次方程,由判別式求出k的取值范圍,和用k表示的x1+x2,x1x2的表達式,然后分以O或A或B為直角頂點,根據向量垂直的坐標表示的充要條件列出關于k的方程,求解即可.
試題解析:(Ⅰ)
,所以橢圓方程為
(Ⅱ)由已知直線AB的斜率存在,設AB的方程為:
由
得
,得:
,即
設
,
(1)若
為直角頂點,則
,即
, ![]()
,所以上式可整理得,
,解,得
,滿足
(2)若
為直角頂點,不妨設以
為直角頂點,
,則
滿足:
,解得
,代入橢圓方程,整理得,![]()
解得,
,滿足
![]()
時,三角形
為直角三角形
考點:1.橢圓方程及其性質;2.直線與橢圓的相交的條件;3.向量垂直的充要條件.
科目:高中數學 來源: 題型:解答題
已知△ABC中, 點A,B的坐標分別為A(-
,0),B(
,0)點C在x軸上方.
(Ⅰ)若點C坐標為(
,1),求以A,B為焦點且經過點C的橢圓的方程:
(Ⅱ)過點P(m,0)作傾斜角為
的直線l交(1)中曲線于M,N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,橢圓C過點
,兩個焦點為
.
(1)求橢圓C的方程;
(2)
是橢圓C上的兩個動點,如果直線
的斜率與
的斜率互為相反數,證明直線
的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左、右焦點分別為
、
,P為橢圓
上任意一點,且
的最小值為
.
(1)求橢圓
的方程;
(2)動圓
與橢圓
相交于A、B、C、D四點,當
為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的長軸兩端點分別為
,
是橢圓上的動點,以
為一邊在
軸下方作矩形
,使
,
交
于點
,
交
于點
.![]()
(Ⅰ)如圖(1),若
,且
為橢圓上頂點時,
的面積為12,點
到直線
的距離為
,求橢圓的方程;
(Ⅱ)如圖(2),若
,試證明:
成等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知一條曲線
在
軸右邊,
上每一點到點
的距離減去它到
軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點M
的直線
與曲線C有兩個交點
,且
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知橢圓
的左焦點為
,且橢圓
的離心率
.
(1)求橢圓
的方程;
(2)設橢圓
的上下頂點分別為
,
是橢圓
上異于
的任一點,直線
分別交
軸于點
,證明:
為定值,并求出該定值;
(3)在橢圓
上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線
的參數方程為![]()
是參數
,
是曲線
與
軸正半軸的交點.以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,求經過點
與曲線
只有一個公共點的直線
的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
,拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,每條曲線上取兩個點,將其坐標記錄于表中:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com