設函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個零點,求滿足條件的最小正整數(shù)a的值;
(3)若方程f(x)=c有兩個不相等的實數(shù)根x1、x2,求證:f′
>0.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,其中m,a均為實數(shù).
(1)求
的極值;
(2)設
,若對任意的![]()
,
恒成立,求
的最小值;
(3)設
,若對任意給定的
,在區(qū)間
上總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(1)當
時,求函數(shù)
單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間[1,2]上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)![]()
(1)若
為
的極值點,求
的值;
(2)若
的圖象在點
處的切線方程為
,
①求
在區(qū)間
上的最大值;
②求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
的圖象與
的圖象關于直線
對稱。
(Ⅰ)若直線
與
的圖像相切, 求實數(shù)
的值;
(Ⅱ)判斷曲線
與曲線
公共點的個數(shù).
(Ⅲ)設
,比較
與
的大小, 并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一火車鍋爐每小時煤的消耗費用與火車行駛速度的立方成正比,已知當速度為20 km/h時,每小時消耗的煤價值40元,其他費用每小時需400元,火車的最高速度為100 km/h,火車以何速度行駛才能使從甲城開往乙城的總費用最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(其中
為自然對數(shù)的底數(shù)).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)定義:若函數(shù)
在區(qū)間
上的取值范圍為
,則稱區(qū)間
為函數(shù)
的“域同區(qū)間”.試問函數(shù)
在
上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com