已知函數(shù)
,(
)在
處取得最小值.
(Ⅰ)求
的值;
(Ⅱ)若
在
處的切線方程為
,求證:當
時,曲線
不可能在直線
的下方;
(Ⅲ)若
,(
)且
,試比較
與
的大小,并證明你的結(jié)論.
(Ⅰ)
;(Ⅱ)詳見解析;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ)導(dǎo)數(shù)法,先求導(dǎo)數(shù),由條件
,得出
的值,再令
或
,判斷函數(shù)的單調(diào)區(qū)間;(Ⅱ)導(dǎo)數(shù)法,構(gòu)造新函數(shù)
,再用導(dǎo)數(shù)法,證明![]()
在
恒成立,從而得出結(jié)論;(Ⅲ)用導(dǎo)數(shù)的幾何意義,得出直線方程
,在用導(dǎo)數(shù)法證明
.
試題解析:(Ⅰ)
,由已知得
, (3分)
當
時
,此時
在
單調(diào)遞減,在
單調(diào)遞增,
(Ⅱ)
,
,
在
的切線方程為
,
即
. (6分)
當
時,曲線
不可能在直線
的下方![]()
在
恒成立,
令
,
,
當
,
,
即![]()
在
恒成立,
所以當
時,曲線
不可能在直線
的下方, (9分)
(Ⅲ)
,
先求
在
處的切線方程,
故
在
的切線方程為
,即
,
下先證明
,
令![]()
,
當
,![]()
![]()
![]()
![]()
![]()
. (14分)
考點:導(dǎo)數(shù)的運算法則,利用導(dǎo)數(shù)研究函數(shù)的極值,不等式的證明等知識.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
x
-ax+(a-1)
,
。
(1)討論函數(shù)
的單調(diào)性;(2)若
,設(shè)
,
(ⅰ)求證g(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x
,x![]()
![]()
,x![]()
x
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,
.
(1)求證:函數(shù)
在
上單調(diào)遞增;
(2)若函數(shù)
有四個零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(1)如果
在
處取得最小值
,求
的解析式;
(2)如果
,
的單調(diào)遞減區(qū)間的長度是正整數(shù),試求
和
的值.(注:區(qū)間
的長度為
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,(其中m為常數(shù)).
(1) 試討論
在區(qū)間
上的單調(diào)性;
(2) 令函數(shù)
.當
時,曲線
上總存在相異兩點
、
,使得過
、
點處的切線互相平行,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)已知函數(shù)![]()
(1)若實數(shù)
求函數(shù)
在
上的極值;
(2)記函數(shù)
,設(shè)函數(shù)
的圖像
與
軸交于
點,曲線
在
點處的切線與兩坐標軸所圍成圖形的面積為
則當
時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)當
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當
時,
取得極值,求函數(shù)
在![]()
上的最小值;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com