中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(14分)(2011•福建)已知a,b為常數,且a≠0,函數f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對數的底數).
(I)求實數b的值;
(II)求函數f(x)的單調區間;
(III)當a=1時,是否同時存在實數m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點?若存在,求出最小的實數m和最大的實數M;若不存在,說明理由.
(I)b=2
(II)當a>0時,函數f(x)的單調遞增區間為(1,+∞),單調遞減區間為(0,1);
當a<0時,函數f(x)的單調遞增區間為(0,1),單調遞減區間為(1,+∞);
(III)見解析

試題分析:(I)把x=e代入函數f(x)=﹣ax+b+axlnx,解方程即可求得實數b的值;
(II)求導,并判斷導數的符號,確定函數的單調區間;
(III)假設存在實數m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點,轉化為利用導數求函數y=f(x)在區間[,e]上的值域.
解:(I)由f(e)=2,代入f(x)=﹣ax+b+axlnx,
得b=2;
(II)由(I)可得f(x)=﹣ax+2+axlnx,函數f(x)的定義域為(0,+∞),
從而f′(x)=alnx,
∵a≠0,故
①當a>0時,由f′(x)>0得x>1,由f′(x)<0得0<x<1;
②當a<0時,由f′(x)>0得0<x<1,由f′(x)<0得x>1;
綜上,當a>0時,函數f(x)的單調遞增區間為(1,+∞),單調遞減區間為(0,1);
當a<0時,函數f(x)的單調遞增區間為(0,1),單調遞減區間為(1,+∞);
(III)當a=1時,f(x)=﹣x+2+xlnx,f′(x)=lnx,
由(II)可得,當x∈(,e),f(x),f′(x)變化情況如下表:

又f()=2﹣<2,
所以y=f(x)在[,e]上的值域為[1,2],
據此可得,若,則對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點;
并且對每一個t∈(﹣∞,m)∪(M,+∞),直線y=t與曲線y=f(x)(x∈[,e])都沒有公共點;
綜上當a=1時,存在最小實數m=1和最大的實數M=2(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點.
點評:此題是個難題.主要考查函數、導數等基礎知識,考查推理論證能力和抽象概括能力、運算求解能力,考查函數與方程思想,數形結合思想,化歸和轉化思想,分類與整合思想.其中問題(III)是一個開放性問題,考查了同學們觀察、推理以及創造性地分析問題、解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若,求證:函數在(1,+∞)上是增函數;
(2)當時,求函數在[1,e]上的最小值及相應的x值;
(3)若存在[l,e],使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,函數.
(1)求函數的單調區間;
(2)求證:對于任意的,都有.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求函數的最小值;
(2)若,證明:當時,.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)當時,討論函數的單調性;
(2)當時,在函數圖象上取不同兩點A、B,設線段AB的中點為,試探究函數在Q點處的切線與直線AB的位置關系?
(3)試判斷當圖象是否存在不同的兩點A、B具有(2)問中所得出的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,函數的導函數,且,其中為自然對數的底數.
(1)求的極值;
(2)若,使得不等式成立,試求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2014·山東濟寧]已知f(x)=x2+2xf′(2014)+2014lnx,則f′(2014)=(  )
A.2015B.-2015C.2014D.-2014

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

(2012•廣東)曲線y=x3﹣x+3在點(1,3)處的切線方程為 _________ 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若,求曲線在點處的切線方程;
(2)求函數的單調區間;
(3)設函數.若至少存在一個,使得成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案