已知函數(shù)
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間.
(3)設(shè)
,如果過點(diǎn)
可作曲線
的三條切線,證明:![]()
(1)![]()
(2)
是增區(qū)間;
是減區(qū)間
(3)根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合極值的符號來得到比較大小。
解析試題分析:解:①根據(jù)題意,由于函數(shù)
.則可知函數(shù)
,那么曲線
在點(diǎn)
處的切線斜率為2,那么根據(jù)點(diǎn)斜式方程可知![]()
②結(jié)合函數(shù)的導(dǎo)數(shù)的符號得到
,那么當(dāng)導(dǎo)數(shù)大于零時,得到x的范圍是
是增區(qū)間;當(dāng)導(dǎo)數(shù)小于零時,得到的x的范圍是
是減區(qū)間
③設(shè)切點(diǎn)為
,![]()
易知
,所以
,
可化為
①
于是,若過點(diǎn)
可作曲線
的三條切線,則方程①有三個相異實(shí)數(shù)根,記
,
則
,易知
的極大值為
,極小值為![]()
綜上,如果過
可作曲線三條切線,則![]()
即:![]()
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于基礎(chǔ)題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(1)求
的單調(diào)區(qū)間;
(2)若關(guān)于
的方程
在區(qū)間
上有唯一實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
在
上的最大值為
,求實(shí)數(shù)
的值;
(Ⅱ)若對任意
,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè)
,對任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
若存在函數(shù)
使得
恒成立,則稱
是
的一個“下界函數(shù)”.
(I) 如果函數(shù)
為實(shí)數(shù)
為
的一個“下界函數(shù)”,求
的取值范圍;
(Ⅱ)設(shè)函數(shù)
試問函數(shù)
是否存在零點(diǎn),若存在,求出零點(diǎn)個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(
,b∈Z),曲線
在點(diǎn)(2,
)處的切線方程為
=3.
(1)求
的解析式;
(2)證明:曲線
=
上任一點(diǎn)的切線與直線
和直線
所圍三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ) 若存在實(shí)數(shù)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com