中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數,
(1)若函數f(x)在R上單調遞增,求實數a的取值范圍;
(2)若函數f(x)在區間(-1,1)上單調遞減,求實數a的取值范圍.
(1) (-∞,0];(2) [3,+∞).

試題分析:(1),要滿足條件,知上恒成立,恒成立,可得;(2)由題知在區間(-1,1)不等式,即在(-1,1)上恒成立,得在(-1,1)的范圍,可得實數的范圍.
解:(1) ∵, 由條件,即在x∈R時恒成立.
, ∴,  ∴實數的取值范圍是(-∞,0].      6分
(2) 由條件 即在x∈(-1,1)時恒成立,
∵x∈(-1,1)時, ∈[0,3), ∴只要即可,
∴實數的取值范圍是[3,+∞).                           12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數 
(1) 當時,求函數的極值;
(2)若,證明:在區間內存在唯一的零點;
(3)在(2)的條件下,設在區間內的零點,判斷數列的增減性.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ln x-ax+1在x=2處的切線斜率為-.
(1)求實數a的值及函數f(x)的單調區間;
(2)設g(x)=,對?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實數k的取值范圍;
(3)證明: ++…+<(n∈N*,n≥2).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知在R上開導,且,若,則不等式的解集為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=+lnx,若函數f(x)在[1,+∞)上為增函數,則正實數a的取值范圍為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(13分)已知函數的圖象在點處的切線垂直于軸.
(1)求實數的值;
(2)求的極值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=ln x-ax,g(x)=ex-ax,其中a為實數.若f(x)在(1,+∞)上是單調減函數,且g(x)在(1,+∞)上有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的導函數的圖像如圖所示,則(   )
A.的極大值點B.的極大值點
C.的極大值點D.的極小值點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=1+x-在(0,2π)上是(  )
A.增函數B.在(0,π)上遞增,在(π,2π)上遞減
C.減函數D.在(0,π)上遞減,在(0,2π)上遞增

查看答案和解析>>

同步練習冊答案