中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知是函數的一個極值點。
(Ⅰ)求
(Ⅱ)求函數的單調區間;
(Ⅲ)若直線與函數的圖象有3個交點,求的取值范圍。

(Ⅰ);(Ⅱ)單調增區間是,單調減區間是;
(Ⅲ)

解析試題分析:(Ⅰ)因為 ,是函數的一個極值點,所以
因此.                                                                ---3分
(Ⅱ)由(Ⅰ)知,


時,
時,
所以的單調增區間是,                                   ---6分
的單調減區間是.                                                ---8分
(Ⅲ)由(Ⅱ)知,內單調增加,在內單調減少,在上單調增加,
且當時,
所以的極大值為,極小值為.                ---10分
因此

所以在的三個單調區間,
因為直線的圖象各有一個交點,當且僅當
因此,的取值范圍為.                                      ---12分
考點:本小題主要考查函數、導函數等基礎知識,運用導函數研究函數性質(單調性、最值),以及利用函數的單調性考查已知兩函數交點各數時參數的取值范圍,考查學生代數恒等變形能力和綜合運用數學知識分析問題和解決問題的能力.
點評:導數的工具性使得導數在高考中的應用有得天獨厚的優勢,特別是在研究函數的性質方面.近年,各地高考都從不同的方面對導數內容進行考查,既有考查導數的小題,又有考查導數綜合應用的大題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分15分)
若函數時取得極值,且當時,恒成立.
(1)求實數的值;
(2)求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數
(Ⅰ)討論函數在定義域內的極值點的個數;
(Ⅱ)若函數處取得極值,對,恒成立,
求實數的取值范圍;
(Ⅲ)當時,試比較的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知,在時,都取得極值。
(Ⅰ)求的值;
(Ⅱ)若都有恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(10分)求下列函數的導數
      ②

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的一個極值點.
(Ⅰ)求函數的單調區間;
(Ⅱ)若當時,恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 
已知a∈R,函數f(x)=4x3-2ax+a.
(1)求f(x)的單調區間;
(2)證明:當0≤x≤1時,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若函數處與直線相切;
①求實數的值;②求函數上的最大值;
(2)當時,若不等式對所有的都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本大題12分)
已知函數上為單調遞增函數.
(Ⅰ)求實數的取值范圍;
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步練習冊答案