中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f (x) =
(1)試判斷當的大小關系;
(2)試判斷曲線是否存在公切線,若存在,求出公切線方程,若不存在,說明理由;
(3)試比較 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)與的大小,并寫出判斷過程.

(1);
(2)方程無解,故二者沒有公切線。
(3) (1 + 1×2) (1 + 2×3) ……(1 +2012×2013) 。

解析試題分析:(1)設,則     1分
,時,        2分
在區間單調遞減,在區間單調遞增,         3分
所以取得最小值為,        4分
(2)假設曲線有公切線,切點分別為     5分
因為,所以分別以為切線的切線方程為       6分
              8分
所以由顯然,當時,,當時,,所以,        9分
所以方程無解,故二者沒有公切線。         10分
(3)由(1)得對任意的x>0都成立,
           11分
ln(1 + 1×2) + ln(1 + 2×3) + …+ln[1 + n (n + 1)]>
==2012,      13分
則ln(1 + 1×2) + ln(1 + 2×3) + …+ln(1 + 2012×2013)  >2×2012-3=4021,
所以(1 + 1×2) (1 + 2×3) ……(1 +2012×2013)           14分
考點:本題主要考查導數的幾何意義,直線方程,應用導數研究函數的單調性、最值及不等式恒成立問題。
點評:典型題,本題屬于導數應用中的基本問題,通過研究函數的單調性,明確了極值情況。涉及比較大小問題,通過構造函數,轉化成了研究函數的單調性及最值。涉及對數函數,要特別注意函數的定義域。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

函數
(1)當x>0時,求證:
(2)是否存在實數a使得在區間[1.2)上恒成立?若存在,求出a的取值條件;
(3)當時,求證:f(1)+f(2)+f(3)+…+.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知在區間[0,1]上是增函數,在區間上是減函數,又.
(1) 求的解析式;
(2) 若在區間(m>0)上恒有x成立,求m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求函數的最大值;
(Ⅱ)若對任意,不等式恒成立,求實數的取值范圍;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,
(I)若,求函數的極小值,
(Ⅱ)若,設,函數.若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,;
(1)討論的單調性;
(2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.()
(1)當時,試確定函數在其定義域內的單調性;
(2)求函數上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數其中
(1)若=0,求的單調區間;
(2)設表示兩個數中的最大值,求證:當0≤x≤1時,||≤

查看答案和解析>>

同步練習冊答案