中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x2 (x≠0,a∈R).
(1)判斷函數f(x)的奇偶性;
(2)若f(x)在區間[2,+∞)上是增函數,求實數a的取值范圍.

(1) f(x)既不是奇函數也不是偶函數  (2) (-∞,16]

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

求下列函數的單調區間.
(1)f(x)=x3x;(2)y=exx+1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的單調遞增區間;
(2)若函數F(x)=f(x)-x2+3xa上只有一個零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3-x2+ax-a(a∈R).
(1)當a=-3時,求函數f(x)的極值.
(2)若函數f(x)的圖象與x軸有且只有一個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數,在(0,1)上是增函數,函數f(x)在R上有三個零點,且1是其中一個零點.
(1)求b的值      (2)求f(2)的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求曲線在點的切線方程;
(2)對一切,恒成立,求實數的取值范圍;
(3)當時,試討論內的極值點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a>0,函數f(x)=ax2-ln x.
(1)求f(x)的單調區間;
(2)當a=時,證明:方程f(x)=f 在區間(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)求函數的單調遞增區間;
(2)若關于的方程在區間內恰有兩個相異的實根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖像過坐標原點,且在點處的切線的斜率是
(1)求實數的值;
(2)求在區間上的最大值;
(3)對任意給定的正實數,曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.

查看答案和解析>>

同步練習冊答案